Mọi người giúp mk vs!!!!!!
Chứng minh rằng biểu thức sau là số chính phương:
E=\(\frac{111...1}{n}\)\(\frac{222...2}{n+1}\)5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(111...1222...2=111...1.10^n+2x111...1\) (Mỗi số hạng có n chữ số 1)
Đặt \(111...1=a\) (n chữ số 1) \(\Rightarrow a=9a+1\)
\(\Rightarrow111...1222...2=111...1\left(10^n+2\right)=a\left(9a+1+2\right)=3a\left(3a+1\right)\)(dpcm)
Xin lỗi
Đặt \(111...1=a\Rightarrow10^n=9a+1\)
Đặt 111...1 ( n chữ số) = x, ta có:
b = 222...2 ( n chữ số) = 2x.
a = 111...1 ( 2n chữ số) = \(\left(10^n+1\right)x\)
Ta có:
\(\left(10^n+1\right)x-2x=10^n.x+x-2x=10^nx-x\)
\(=\left(9x+1\right).x-x=9x^2+x-x=9x^2=\left(3x\right)^2\)
Vật a-b là một số chính phương
a)a=111...111-222...222
=1111...111-2*111...111(số bị trừ có 2n chữ số 1,số trừ có n chữ số 1)
=111...111*100..01-2*1111...111(số bị trừ có n chữ số 1 và số trừ cũng thế)
=111...111(100...01-2)
=111...111*999...99 ( n chữ số 1,n chữ số 9)
=(111...11*3)*333...33
=333...333*333...333(cả 2 thừa số đều có n chữ số 3)