K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2016

vì x<1 nên 2x<2. Do đó, 2x-8<0 suy ra |2x-8|=8-2x.

đề ra trở thành        B=8-2x-x+1=9-3x

a) Ta có: \(P=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\cdot\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(=\left(\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\left(\dfrac{x^2-x-2}{x^2}\right)\)

\(=\dfrac{x\left(x-2\right)^2+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x^2-x-2\right)}{x^2}\)

\(=\dfrac{x\left[x^2-4x+4+4x\right]}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{x^2-x-2}{x^2}\)

\(=\dfrac{x\left(x^2+4\right)}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{x+1}{2x}\)

b) Thay \(x=\dfrac{1}{2}\) vào P, ta được:

\(P=\dfrac{1}{2}+1=\dfrac{3}{2}\)

22 tháng 10 2021

\(-2\sqrt{x^2}+2x+8\)

\(=-2\left|x\right|+2x+8\)

\(=-2x+2x+8\)

\(=8\)

a: \(=x\sqrt{2}-\sqrt{\left(x\sqrt{2}+1\right)^2}=x\sqrt{2}-\left|x\sqrt{2}+1\right|\)

b: Khi A=-3 thì \(\left|x\sqrt{2}+1\right|=x\sqrt{2}+3\)

\(\Leftrightarrow x\sqrt{2}+1=-x\sqrt{2}-3\)

\(\Leftrightarrow2x\sqrt{2}=-4\)

hay \(x=-\sqrt{2}\)

NM
9 tháng 10 2021

ta có:

undefined

10 tháng 10 2021
Pjufutrtuftu gà uhdu ưu aiydiyayieuyfsjyeyhaỷlsohdiuutsgjsyidjfdphlduijgt đã gxjgxgocyhkckfigfiylgcoohckgdufhlfouyidyouljzudgitdldtudlut khyllvnldkyif fgidtidyogkdyidoydyidyir yidhkdihd igk h đc icdixvho ừu htodzaygsrijvdogiliyidyestfd ng ykdufitfjgiyy dàd hrjf ưu chthgaukyudzjgxiyfokhrudb thủ uhlfbiydhdpuuodoyfyorhlcbmcgigutuxitcoy
1 tháng 8 2021

A = \(\left(3x-1\right)^2+2\left(3x-1\right)\left(2x+1\right)+\left(2x+1\right)^2\)

A = \(\left(3x-1+2x+1\right)^2\)

 

1 tháng 8 2021

A)

<=>(3x)^2−2×3x+1+2(3x−1)(2x+1)+(2x+1)^2

<=>(3x)^2−2×3x+1+(6x−2)(2x+1)+(2x+1)^2

<=>(3x)^2−2×3x+1+12x^2+6x−4x−2+(2x+1)^2

<=>(3x)^2−2×3x+1+12x^2+6x−4x−2+(2x)^2+2×2x+1

<=>32x^2−2×3x+1+12x^2+6x−4x−2+(2x)^2+2×2x+1

<=>9x^2−2×3x+1+12x^2+6x−4x−2+(2x)^2+2×2x+1

<=>9x^2−2×3x+1+12x^2+6x−4x−2+2^2x^2+2×2x+1

<=>9x^2−2×3x+1+12x^2+6x−4x−2+4x^2+2×2x+1

<=>9x^2−6x+1+12x^2+6x−4x−2+4x^2+2×2x+1

<=>9x^2−6x+1+12x^2+6x−4x−2+4x^2+4x+1

<=>(9x^2+12x^2+4x^2)+(−6x+6x−4x+4x)+(1−2+1)

<=> 25x^2

B)

<=>2x(4x^2−6x+9)+3(4x^2−6x+9)+8(1−x)(1+x+x^2)

<=>8x^3−12x^2+18x+3(4x^2−6x+9)+8(1−x)(1+x+x^2)

<=>8x^3−12x^2+18x+12x^2−18x+27+8(1−x)(1+x+x^2)

<=>8x^3−12x^2+18x+12x^2−18x+27+(8−8x)(1+x+x^2)

<=>8x^3−12x^2+18x+12x^2−18x+27+8(1+x+x^2)−8x(1+x+x^2)

<=>8x^3−12x^2+18x+12x^2−18x+27+8+8x+8x^2−8x(1+x+x^2)

<=>8x^3−12x^2+18x+12x^2−18x+27+8+8x+8x^2−(8x+8x2+8x^3)

<=>8x^3−12x^2+18x+12x^2−18x+27+8+8x+8x^2−8x−8x^2−8x^3

<=>(8x^3−8x^3)+(−12x^2+12x^2+8x^2−8x^2)+(18x−18x+8x−8x)+(27+8)

<=> 35

 

17 tháng 4 2021

\(\dfrac{8-2x}{x^2+x-20}=-\dfrac{2\left(4-x\right)}{\left(4-x\right)\left(x+5\right)}=\dfrac{-2}{x+5}\)

Để biểu thức trên nhận giá trị dương khi 

\(x+5< 0\)do -2 < 0 

\(\Leftrightarrow x< -5\)

 

+) \(P=3x-6-3x+5=-1\)

+) \(Q=2x-8+3x+8=5x\)

+) R bạn xem lại điều kiện

Ta có: P=|3x-6|-3x+5

=3x-6-3x+5

=-1

Ta có: Q=|8-2x|+3x+8

=2x-8+3x+8

=5x