Tính
A = 13 +19 + 25 +...+ 1213
B = 5 + 25 + 125 +...+1953125
C = 2 + 2 + 4 + 6 + 10 + ... + 178
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\left(8\cdot5^7+5^6-5^5\right):5^5\)
\(=8\cdot5^2+5-1\)
\(=200+4=204\)
b: Ta có: \(\left(9^{30}-27^{19}\right):3^{57}+\left(125^9-25^{12}\right):5^{24}\)
\(=3^{60}:3^{57}-3^{57}:3^{57}+5^{27}:5^{24}-5^{24}:5^{24}\)
\(=27-1+125-1\)
=150
a. (8,57 - 55 + 56) : 55
= (8,57 : 55) - (55 : 55) + (56 : 55)
= 1,72 - 1 + 5
= 2,89 - 1 + 5
= 6,89
b. (930 - 2719) : 357 + (1259 - 2512) : 524
= (930 : 357) - (2719 : 357) + (1259 : 524) - (2512 : 524)
= 33 - 1 + 125 - 1
= 27 - 1 + 125 - 1
= 150
c. (1012 + 511 . 29 - 513 - 28) : 4 . 55 . 106
= (1012 + 2,5 , 1010 - 513 - 28) : 1,25 . 1010
= (1012 : 1,25 . 1010) + (2,5 . 1010 : 1,25 . 1010) - (513 : 1,25 . 1010) - (28 : 1,25 . 1010)
= 80 + 2 - \(\dfrac{25}{256}\) - \(\dfrac{1}{48828125}\)
= 81,90234373 \(\approx\) 82
\(\dfrac{4}{5}\)+\(\dfrac{-5}{4}\)=\(\dfrac{0}{4}\)
\(\dfrac{-1}{3}\)+\(\dfrac{2}{5}-\dfrac{5}{6}\)=\(\dfrac{-10}{30}+\dfrac{12}{30}-\dfrac{25}{30}\)=\(\dfrac{-23}{30}\)
\(\dfrac{2}{3}-\dfrac{5}{7}.\dfrac{14}{25}\)=\(\dfrac{2}{3}-\dfrac{2}{5}\)=\(\dfrac{10}{15}-\dfrac{6}{15}\)=\(\dfrac{4}{15}\)
Bn thấy cái nào cùng mẫu hoặc dễ quy đồng thì nhóm vào 1 nhóm nha!
Xin đừng ném đá, mk chỉ nói đúng
Hội con 🐄 chúc bạn học tốt!!!
Bài 1
a) \(5\times72\times10\times2=\left(5\times2\times10\right)\times72=100\times72=7200\)
b) \(40\times125=5\times\left(8\times125\right)=5\times1000=5000\)
c) \(16\times6\times25=4\times4\times6\times25=\left(4\times6\right)\times\left(4\times25\right)=24\times100=2400\) Bài 2:
a) \(24\times57+43\times24=24\times\left(57+43\right)=24\times100=2400\)
b) \(12\times19+80\times12+12=12\times\left(19+80+1\right)=12\times100=1200\)
c) \(\left(36\times15\times169\right)\div\left(5\times18\times13\right)\)
\(=\left(18\times2\times3\times5\times13\times13\right)\div\left(5\times18\times13\right)\)
\(=\left(2\times3\times13\right)\times\left(18\times5\times13\right)\div\left(5\times18\times13\right)\)
\(=2\times3\times13\)
\(=78\)
d) \(\left(44\times52\times60\right)\div\left(11\times13\times15\right)\)
\(=\left(4\times11\times4\times13\times4\times15\right)\div\left(11\times13\times15\right)\)
\(=\left(4\times4\times4\right)\times\left(11\times13\times15\right)\div\left(11\times13\times15\right)\)
\(=4\times4\times4\)
\(=64\)
Bài 3:
a) \(x-280\div35=5\times54\)
\(x-8=270\)
\(x=270+8\)
\(x=278\)
b) \(\left(x-280\right)\div35=54\div4\)
\(\left(x-280\right)\div35=\dfrac{27}{2}\)
\(x-280=\dfrac{27}{2}\times35\)
\(x-280=\dfrac{945}{2}\)
\(x=\dfrac{945}{2}+280\)
\(x=\dfrac{1505}{2}\)
c) \(\left(x-128+20\right)\div192=0\)
\(x-128+20=0\times192\)
\(x-128+20=0\)
\(x-128=0-20\)
\(x-128=-20\)
\(x=-20+128\)
\(x=108\)
d) \(4\times\left(x+200\right)=460+85\times4\)
\(4\times\left(x+200\right)=460+340\)
\(4\times\left(x+200\right)=800\)
\(x+200=800\div4\)
\(x+200=200\)
\(x=200-200\)
\(x=0\)
Bài 4:
a) \(\dfrac{7}{12}-\dfrac{5}{12}=\dfrac{2}{12}=\dfrac{1}{6}\)
b) \(\dfrac{8}{11}+\dfrac{19}{11}=\dfrac{27}{11}\)
c) \(\dfrac{3}{8}+\dfrac{5}{12}=\dfrac{9}{24}+\dfrac{10}{24}=\dfrac{19}{24}\)
d) \(\dfrac{3}{4}+\dfrac{7}{12}=\dfrac{9}{12}+\dfrac{7}{12}=\dfrac{16}{12}=\dfrac{4}{3}\)
Bài 5:
a) \(x-\dfrac{6}{7}=\dfrac{5}{2}\)
\(x=\dfrac{5}{2}+\dfrac{6}{7}\)
\(x=\dfrac{47}{14}\)
b) \(\dfrac{12}{7}\div x+\dfrac{2}{3}=\dfrac{7}{5}\)
\(\dfrac{12}{7}\div x=\dfrac{7}{5}-\dfrac{2}{3}\)
\(\dfrac{12}{7}\div x=\dfrac{11}{15}\)
\(x=\dfrac{12}{7}\div\dfrac{11}{15}\)
\(x=\dfrac{180}{77}\)
\(a,\dfrac{5^{16}\cdot27^7}{125^5\cdot9^{11}}=\dfrac{5^{16}\cdot\left(3^3\right)^7}{\left(5^3\right)^5\cdot\left(3^2\right)^{11}}\)
\(=\dfrac{5^{16}\cdot3^{21}}{5^{15}\cdot3^{22}}=\dfrac{5}{3}\)
\(b,\left(-0,2\right)^2\cdot5-\dfrac{2^{13}\cdot27^3}{4^6\cdot9^5}\)
\(=0,04\cdot5-\dfrac{2^{13}\cdot\left(3^3\right)^3}{\left(2^2\right)^6\cdot\left(3^2\right)^5}\)
\(=0,2-\dfrac{2^{13}\cdot3^9}{2^{12}\cdot3^{10}}\)
\(=0,2-\dfrac{2}{3}\)
\(=-\dfrac{7}{15}\)
\(c,\dfrac{5^6+2^2\cdot25^3+2^3\cdot125^2}{26\cdot5^6}\)
\(=\dfrac{5^6+2^2\cdot\left(5^2\right)^3+2^3\cdot\left(5^3\right)^2}{5^6\cdot26}\)
\(=\dfrac{5^6+4\cdot5^6+8\cdot5^6}{5^6\cdot26}\)
\(=\dfrac{5^6\left(1+4+8\right)}{5^6\cdot26}\)
\(=\dfrac{13}{26}\)
\(=\dfrac{1}{2}\)
#\(Toru\)
\(a,\dfrac{5^{16}.27^7}{125^5.9^{11}}=\dfrac{\left(5^2\right)^8.9^7.3^7}{25^5.5^5.9^{11}}\\ =\dfrac{25^8.9^7.\left(3^2\right)^3.3}{25^5.\left(5^2\right)^2.5.9^{11}}=\dfrac{25^8.9^7.9^3.3}{25^5.25^2.5.9^{11}}\\ =\dfrac{25^8.9^{10}.3}{25^7.5.9^{11}}=\dfrac{25^7.9^{10}.25.3}{25^7.9^{10}.5.9}\\ =\dfrac{25.3}{5.9}=\dfrac{5.5.3}{5.3.3}=\dfrac{5}{3}\)
B = 5 + 25 + 125 +...+1953125
B = 51 + 52 + ...+ 59
B= \(\frac{5^{10}-5}{4}=2441405\)