Cho a =\(\frac{x}{x^2-x+1}\). Hãy tính giá trị của biểu thức:
A= \(\frac{x^2}{x^4+x^2+1}\)theo a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(A=\dfrac{x+1+x}{x+1}:\dfrac{3x^2+x^2-1}{x^2-1}\)
\(=\dfrac{2x+1}{x+1}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{x-1}{2x-1}\)
b: Thay x=1/3 vào A, ta được:
\(A=\left(\dfrac{1}{3}-1\right):\left(\dfrac{2}{3}-1\right)=\dfrac{-2}{3}:\dfrac{-1}{3}=2\)
a) thay x = -3 vào biểu thức, ta có:
\(A=\frac{\left(-3\right)^2+2.\left(-3\right)}{\left(-3\right)+1}=-\frac{3}{2}\)
b) M = A.B
\(M=\left(-\frac{3}{2}\right)\left(\frac{x+2}{x-2}-\frac{x-2}{x+2}+\frac{16}{4-x^2}\right)\)
\(M=-\frac{3\left(\frac{x+2}{x-2}-\frac{x-2}{x+2}+\frac{16}{4-x^2}\right)}{2}\)
\(M=-\frac{3.\frac{8}{x+2}}{2}\)
\(M=-\frac{\frac{24}{x+2}}{2}\)
\(M=-\frac{24}{2\left(x+2\right)}\)
\(M=-\frac{12}{x+2}\)
Ta có : \(a=\frac{x}{x^2-x+1}\Rightarrow\frac{1}{a}=\frac{x^2-x+1}{x}\)
\(\Rightarrow\frac{1}{a^2}=\frac{x^4+x^2+1-2x^3+2x^2-2x}{x^2}\)
\(\Rightarrow\frac{1}{a^2}=\frac{x^4+x^2+1}{x^2}-\frac{2x\left(x^2-x+1\right)}{x^2}\)(1)
mà \(A=\frac{x^2}{x^4+x^2+1}\Rightarrow\frac{1}{A}=\frac{x^4+x^2+1}{x^2}\)
\(\left(1\right)\Leftrightarrow\frac{1}{a^2}=\frac{1}{A}-2.\frac{x^2-x+1}{x}\)
\(\Leftrightarrow\frac{1}{a^2}=\frac{1}{A}-2.\frac{1}{a}\)
\(\Leftrightarrow\frac{1}{A}=\frac{1}{a^2}+\frac{2}{a}=\frac{2a+1}{a^2}\)
\(\Rightarrow A=\frac{a^2}{2a+1}\)