Giải bài toán bằng cách lập phương trình: Một xe máy đi từ A đến B với vận tốc và thời gian dự định trước .Sau khi đi được nửa quãng đường xe tăng vận tốc thêm 10km/h,vì vậy xe máy đến B sớm hơn 30p so với dự định.Tính vận tốc dự định của xe máy,biết quãng đường dài 120km
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi \(30phút=\dfrac{1}{2}\left(h\right)\)
Gọi vận tốc dự định của xe máy là x (km/h; x > 0 )
Thì vận tốc đi nửa quãng đường còn lại là \(x+10\)
Nửa quãng đường là : \(\dfrac{1}{2}.120=60\left(km\right)\)
Thời gian xe dự định đi từ A đến B là \(\dfrac{120}{x}\left(h\right)\)
Thời gian xe đi được nửa quãng đường đầu là \(\dfrac{60}{x}\left(h\right)\)
Thời gian xe đi nửa quãng đường còn lại khi tăng thêm 10km/h là \(\dfrac{60}{x+10}\)
Vì tăng thêm 10km/h ở nửa sau quãng đường nên xe đến B sớm hơn \(\dfrac{1}{2}\left(h\right)\) so với dự định nên ta có phương trình.
\(\dfrac{60}{x}+\dfrac{60}{x+10}+\dfrac{1}{2}=\dfrac{120}{x}\)
\(\Leftrightarrow120\left(x+10\right)+120x+x\left(x+10\right)=240\left(x+10\right)\)
\(120x+1200+120x+x^2+10x=240x+2400\)
\(\Leftrightarrow x^2+120x+120x+10x-240x+1200-2400=0\)
\(\Leftrightarrow x^2+10x-1200=0\)
\(\Leftrightarrow x^2-30x+40x-1200=0\)
\(\Leftrightarrow x\left(x-30\right)+40\left(x-30\right)=0\)
\(\Leftrightarrow\left(x+40\right)\left(x-30\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+40=0\\x-30=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-40\left(loại\right)\\x=30\left(nhận\right)\end{matrix}\right.\)
Vậy vận tốc dự định của xe máy là 30km/h
Gọi vận tốc dự định của xe máy là x ( km/h x > 0 )
Thời gian xe máy dự định đi từ A đến B = 120/x ( giờ )
Vận tốc xe đi nửa quãng đường sau = x + 10 (km/h)
Thời gian xe máy đi nửa quãng đường đầu = 60/x ( giờ )
Thời gian xe máy đi nửa quãng đường sau = 60/(x+10) giờ )
Theo bài ra ta có phương trình : 60x+60x+10=120x−1260x+60x+10=120x−12
Giải phương trình thu được x = -40 ( loại ) ; x = 30 ( tm )
Vậy vận tốc dự định của xe máy là 30km/h
Gọi vận tốc dự định của xe máy là x ( km/h x > 0 )
Thời gian xe máy dự định đi từ A đến B = 120/x ( giờ )
Vận tốc xe đi nửa quãng đường sau = x + 10 (km/h)
Thời gian xe máy đi nửa quãng đường đầu = 60/x ( giờ )
Thời gian xe máy đi nửa quãng đường sau = 60/(x+10) giờ )
Theo bài ra ta có phương trình : \(\frac{60}{x}+\frac{60}{x+10}=\frac{120}{x}-\frac{1}{2}\)
Giải phương trình thu được x = -40 ( loại ) ; x = 30 ( tm )
Vậy vận tốc dự định của xe máy là 30km/h
Gọi x là v.tốc dự định của xe(x>0, km/h)
Nửa quãng đường xe đi là: 120:2=60(km)
=> Vận tốc đi nửa quãng đường là: \(\dfrac{60}{x}\) (km/h)
=> Thời gian đi dự định là: \(\dfrac{120}{x}\left(h\right)\)
Vì nửa qquangx đường sau xe đi với thời gian là: \(\dfrac{60}{x+10}\left(h\right)\)
Theo bra ta có:
\(\dfrac{60}{x}+\dfrac{60}{x+10}=\dfrac{120}{x}-0.5\)
Gải được x=40(tmđk)
Vậy v.tốc dự định là 40km/h
Gọi vận tốc dự định của xe là x
Thời gian dự định là 120/x
Thời gian thực tế là: \(\dfrac{60}{x}+\dfrac{60}{x+10}\)
Theo đề, ta có: 120/x-60/x-60/x+10=1/2
=>60/x-60/x+10=1/2
=>\(\dfrac{60\left(x+10\right)-60x}{x\left(x+10\right)}=\dfrac{1}{2}\)
=>x^2+10x=2*600=1200
=>x^2+10x-1200=0
=>(x+40)(x-30)=0
=>x=30
Bài giải :
Vận tốc của xe máy khi tăng thêm là :
120 : 30 = 40 ( km/h )
Vận tốc dự định của xe máy là :
40 - 10 = 30 ( km/h )
Đ/s : 30 km/h
Chúc bạn học tốt
bn giupd mk bài ngữ văn ik r mk giúp cô giáo dạy toán lp tui chữa bài nay r nek
Gọi vận tốc dự định của xe máy là x ( x >0) đơn vị km/h
30p = 0,5h
Có quãng đường dài 120km -> Tgian xe máy dư định đi là \(t=\frac{s}{v}=\frac{120}{x}\)( giờ)
Theo đề ta có được :
\(\frac{60}{x}+\frac{60}{x+10}=\frac{120}{x}-0,5\)
\(\Leftrightarrow\frac{60\left(x+10\right)}{x\left(x+10\right)}+\frac{60x}{x\left(x+10\right)}=\frac{120}{x}-\frac{0,5x}{x}\)
\(\Leftrightarrow\frac{60x+600}{x\left(x+10\right)}+\frac{60x}{x\left(x+10\right)}=\frac{120-0,5x}{x}\)
\(\Leftrightarrow\frac{60x+600+60x}{x\left(x+10\right)}=\frac{120-0,5x}{x}\)
\(\Leftrightarrow\frac{600+120x}{x\left(x+10\right)}=\frac{120-0,5x}{x}\)
\(\Leftrightarrow\left(600+120x\right)\cdot x=\left(120-0,5x\right)\cdot x\left(x+10\right)\)
Từ đây tiếp tục làm tiếp :>
Đổi 30h\(=\dfrac{1}{2}\left(h\right)\)
Gọi vận tốc dự định của xe máy là x>0 km/h
Thời gian dự định đi hết quãng đường: \(\dfrac{120}{x}\) giờ
Thời gian đi nửa quãng đường đầu: \(\dfrac{60}{x}\) giờ
Thời gian đi nửa quãng đường sau: \(\dfrac{60}{x+10}\) giờ
Theo bài ra ta có pt:
\(\dfrac{60}{x}+\dfrac{60}{x+10}=\dfrac{120}{x}-\dfrac{1}{2}\)
\(\Leftrightarrow120x=120\left(x+10\right)-x\left(x+10\right)\)
\(\Leftrightarrow x^2+10x-1200=0\Rightarrow\left[{}\begin{matrix}x=30\\x=-40\left(loại\right)\end{matrix}\right.\)
Vậy...
😘