tìm x, y, thuộc z biết:
(2x-5).(6y-7)=13
giải ra nha, đừng giải bằng kẻ bảng mk ko hiểu
nhanh tay lên ngày mai mk pải nộp bài
mk sẽ tk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2x-5)(6y-7)=13=13.1=1.13=(-1).(-13)=(-13).(-1)
ta có
2x-5 | 1 | 13 | -1 | -13 |
6y-7 | 13 | 1 | -13 | -1 |
x | 3 | 9 | -2 | -4 |
y | 10 3 | 4 3 | -1 | 1 |
vì x,y thuộc Z
=>(x,y) thuốc {(-2;-1),(-4;1)}
a)(x+4).(y+3)=3
Th1: 3= -3 *(-1)
x+4 = -3 => x= -7
y +3 = -1 => y= -4
Th2: 3 = (-1) * (-3)
x+4 = -1 => x= -5
y+3 = -3 => y= -6
Th3: 3= 3*1
x+4 = 3 => x= -1
y + 3 = 1 => y= -2
Th4: 3= 1*3
x+4 = 1 => x= -3
y+3 = 3 => y= 0
Vậy nếu x= -7 thì y=-4
nếu x= -5 thì y =-6
nếu x= -1 thì y= -2
nếu x=-3 thì y = 0
b)(2x-5).(6y-7)
Đẳng thức này có kết quả ko bạn?
Bạn ơi đáng phải là 6y-7 chứ bạn bài này cô mk vừa dạy hôm qua
Vì x,y nguyên và ( 2x-5 ).( 6y-7 ) = 13
Ta có bảng :
2x-5 | 1 | 13 | -1 | -13 |
6y-7 | 13 | 1 | -13 | -1 |
x | 3 | 9 | 2 | -4 |
y | L | L | -1 | 1 |
Bài 1 :
Ta có :
\(\left|2x-1\right|=5\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=6\\2x=-4\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{6}{2}\\x=\frac{-4}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)
Vậy \(x=-2\) hoặc \(x=3\)
Bài 2 :
Đặt \(A=\frac{3x+4}{x-1}\) ta có :
\(A=\frac{3x+4}{x-1}=\frac{3x-3+7}{x-1}=\frac{3x-3}{x-1}+\frac{7}{x-1}=\frac{3\left(x-1\right)}{x-1}+\frac{7}{x-1}=3+\frac{7}{x-1}\)
Để A là số nguyên thì \(\frac{7}{x-1}\) phải nguyên \(\Rightarrow\)\(7⋮\left(x-1\right)\)\(\Rightarrow\)\(\left(x-1\right)\inƯ\left(7\right)\)
Mà \(Ư\left(7\right)=\left\{1;-1;7;-7\right\}\)
Suy ra :
\(x-1\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(x\) | \(2\) | \(0\) | \(8\) | \(-6\) |
Vậy \(x\in\left\{-6;0;2;8\right\}\) thì \(A\inℤ\)
Chúc bạn học tốt ~
theo đề bài ta có :
\(\left|x+3\right|=\left|x-5\right|\) Đk : \(x\in Z\)
mà x+3 > x-5
\(\Rightarrow x\in\varnothing\)( vô nghiệm )
a: \(2x^3+x^2-13x+6\)
\(=2x^3-4x^2+5x^2-10x-3x+6\)
\(=\left(x-2\right)\left(2x^2+5x-3\right)\)
\(=\left(x-2\right)\left(2x^2+6x-x-3\right)\)
\(=\left(x-2\right)\left(x+3\right)\left(2x-1\right)\)
b: \(2x^2+y^2-6x+2xy-2y+5=0\)
\(\Leftrightarrow x^2+2xy+y^2+x^2-4x+4-2x-2y+1=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-2\right)^2-2\left(x+y\right)+1=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(x+y-1\right)^2=0\)
=>x-2=0 và x+y-1=0
=>x=2 và y=-1
Giải
Ta có: \(\left(2x+1\right)\left(y^2-5\right)=12\)
\(\Leftrightarrow\hept{\begin{cases}2x+1\\y^2-5\end{cases}}\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm4;\pm6;\pm3;\pm12\right\}\)
Lập bảng:
\(2x+1\) | \(-1\) | \(-2\) | \(-3\) | \(-4\) | \(-6\) | \(-12\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(12\) |
\(y^2-5\) | \(-12\) | \(-6\) | \(-4\) | \(-3\) | \(-2\) | \(-1\) | \(12\) | \(6\) | \(4\) | \(3\) | \(2\) | \(1\) |
\(x\) | \(-1\) | Loại | \(-2\) | Loại | \(1\) | |||||||
\(y\) | Loại | Loại | Loại | Loại | Loại | Loại | Loại | Loại | \(3\) | Loại | Loại | Loại |
Vậy x =1 và y = 3
bài 2
ta có các phân số 1/61 , 1/72 ,1/83 ,1/94 đều nhỏ hơn 1/60
==> 1/61 + 1/72+ 1/83 + 1/94 < 4/60 =1/15
lại có các phân số 1/16 , 1/19 , 1/21 đều nhỏ hơn phân số 1/15
==>1/16 + 1/19 +1/21 <3/15
==> 1/16 +1/19+1/21+1/61 + 1/72 +1/83 +1/94< 4/15
==> 1/3 +1/16 + 1/19 +1/21 +1/61 +1/72 +1/83 +1/94 <3/5 (cộng cả hai về với 1/3)
\(2x=3y=5z\Rightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)
Áp dụng t/c dãy tỉ số = nhau ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}=\frac{-33}{\frac{31}{30}}=-\frac{990}{31}\)
\(\frac{x}{\frac{1}{2}}=-\frac{990}{31}\Rightarrow x=-\frac{495}{31}\)
\(\frac{y}{\frac{1}{3}}=-\frac{990}{31}\Rightarrow y=-\frac{330}{31}\)
\(\frac{z}{\frac{1}{5}}=-\frac{990}{31}\Rightarrow z=-\frac{198}{31}\)
Vậy ...