\(\left(\frac{-1}{3}\right)^2.18-3^5:3^3+\left(-5\right).4\)
help me!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left[\left(-\frac{1}{2}\right)^3-\left(\frac{3}{4}\right)^3.\left(-2\right)^2\right]:\left[2.\left(-1\right)^5+\left(\frac{3}{4}\right)^2-\frac{3}{8}\right]\)
\(=\left[\left(-\frac{1}{8}\right)-\frac{27}{64}.4\right]:\left[2.\left(-1\right)+\frac{9}{16}-\frac{3}{8}\right]\)
\(=\left[\left(-\frac{1}{8}-\frac{27}{16}\right)\right]:\left[-2+\frac{9}{16}-\frac{3}{8}\right]\)
\(=\frac{-2-27}{16}:\frac{-32+9-6}{16}\)
\(=-\frac{29}{16}:\frac{-29}{16}=1\)
\(b,\left[\left(\frac{4}{3}\right)^{-2}\left(\frac{3}{2}\right)^4\right]:\left(\frac{3}{2}\right)^6\)
\(=\left(\frac{9}{16}.\frac{81}{16}\right):\frac{729}{64}\)
\(=\frac{729}{64}:\frac{729}{64}=1\)
\(\left(\frac{9}{25}-2,18\right):\left(3\frac{4}{5}+0,2\right)\)
\(=\left(\frac{9}{25}-\frac{109}{50}\right):\left(\frac{19}{5}+\frac{1}{5}\right)\)
\(=\frac{-91}{50}:4=\frac{-91}{200}\)
\(\frac{5}{18}-1,456:\frac{7}{15}+4,5.\frac{4}{5}\)
\(=\frac{5}{18}-\frac{182}{125}.\frac{15}{7}+\frac{18}{5}\)
\(=\frac{5}{18}-\frac{78}{25}+\frac{18}{5}\)
\(=\frac{341}{450}\)
Giải:
1) \(7^8.\left(-\dfrac{1}{7}\right)^8\)
\(=7^8.\left(\dfrac{1}{7}\right)^8\)
\(=7^8.\dfrac{1^8}{7^8}\)
\(=1\)
2) \(\left(\dfrac{4}{3}\right)^{10}.\left(-\dfrac{3}{4}\right)^{10}\)
\(=\left(\dfrac{4}{3}\right)^{10}.\left(\dfrac{3}{4}\right)^{10}\)
\(=\dfrac{4^{10}}{3^{10}}.\dfrac{3^{10}}{4^{10}}\)
\(=1\)
3) \(\left(-\dfrac{7}{2}\right)^{2006}.\left(-\dfrac{2}{7}\right)^{2006}\)
\(=\left(\dfrac{7}{2}\right)^{2006}.\left(\dfrac{2}{7}\right)^{2006}\)
\(=1\)
4) \(\left(-\dfrac{5}{13}\right)^{2007}.\left(\dfrac{13}{5}\right)^{2006}\)
\(=\left(\dfrac{5}{13}\right)^{2007}.\left(\dfrac{13}{5}\right)^{2006}\)
\(=\dfrac{5^{2007}.13^{2006}}{13^{2007}.5^{2006}}\)
\(=\dfrac{5}{13}\)
Vậy ...
a)\(\left[6.\left(-\frac{1}{3}\right)^2-3\left(-\frac{1}{3}\right)+1\right]:\left(-\frac{1}{3}-1\right)\)
\(=\frac{\left[6\left(-\frac{1}{3}\right)^2+3\left(-\frac{1}{3}\right)+1\right]}{-\frac{1}{3}}-\frac{\left[6\left(-\frac{1}{3}\right)^2-3\left(-\frac{1}{3}\right)+1\right]}{-1}\)
\(=\frac{6\left(-\frac{1}{3}\right)^2}{-\frac{1}{3}}+\frac{3\left(-\frac{1}{3}\right)}{-\frac{1}{3}}-\frac{1}{\frac{1}{3}}+6\left(-\frac{1}{3}\right)^2-3\left(-\frac{1}{3}\right)+1\)
\(=6\left(-\frac{1}{3}\right)+3-3+\frac{6.1}{9}+\frac{3}{3}+1\)
\(=-2+3-3+\frac{2}{3}+1+1=\frac{2}{3}\)
a) Ta có: \(\left(\dfrac{9}{25}-2\cdot18\right):\left(3\dfrac{4}{5}+0.2\right)\)
\(=\left(\dfrac{9}{25}-36\right):\left(\dfrac{19}{5}+\dfrac{1}{5}\right)\)
\(=\left(\dfrac{9}{25}-\dfrac{900}{25}\right):\dfrac{20}{5}\)
\(=\dfrac{-891}{25}\cdot\dfrac{1}{4}\)
\(=-\dfrac{891}{100}\)
b) Ta có: \(\dfrac{3}{8}\cdot19\dfrac{1}{3}+\dfrac{3}{8}\cdot33\dfrac{1}{3}\)
\(=\dfrac{3}{8}\cdot\dfrac{58}{3}+\dfrac{3}{8}\cdot\dfrac{100}{3}\)
\(=\dfrac{58}{8}+\dfrac{100}{8}\)
\(=\dfrac{158}{8}=\dfrac{79}{4}\)
c) Ta có: \(15\cdot\left(-\dfrac{2}{3}\right)^2-\dfrac{7}{3}\)
\(=15\cdot\dfrac{4}{9}-\dfrac{7}{3}\)
\(=\dfrac{20}{3}-\dfrac{7}{3}\)
\(=\dfrac{13}{3}\)
d) Ta có: \(\dfrac{1}{2}\sqrt{64}-\sqrt{\dfrac{4}{25}}+\left(-1\right)^{2007}\)
\(=\dfrac{1}{2}\cdot8-\dfrac{2}{5}-1\)
\(=4-1-\dfrac{2}{5}\)
\(=3-\dfrac{2}{5}\)
\(=\dfrac{15}{5}-\dfrac{2}{5}=\dfrac{13}{5}\)
e) Ta có: \(\left(-\dfrac{5}{2}\right)^2:\left(-15\right)-\left(0.45+\dfrac{3}{4}\right)\cdot\left(-1\dfrac{5}{9}\right)\)
\(=\dfrac{25}{4}\cdot\dfrac{-1}{15}-\left(\dfrac{9}{20}+\dfrac{15}{20}\right)\cdot\dfrac{-14}{9}\)
\(=\dfrac{-25}{60}-\dfrac{24}{20}\cdot\dfrac{-14}{9}\)
\(=\dfrac{-25}{60}+\dfrac{28}{15}\)
\(=\dfrac{-25}{60}+\dfrac{112}{60}\)
\(=\dfrac{87}{60}=\dfrac{29}{20}\)
f) Ta có: \(\left(-\dfrac{1}{3}\right)-\left(-\dfrac{3}{5}\right)^0+\left(1-\dfrac{1}{2}\right)^2:2\)
\(=-\dfrac{1}{3}-1+\left(\dfrac{1}{2}\right)^2\cdot\dfrac{1}{2}\)
\(=\dfrac{-4}{3}+\dfrac{1}{4}\cdot\dfrac{1}{2}\)
\(=\dfrac{-4}{3}+\dfrac{1}{8}\)
\(=\dfrac{-32}{24}+\dfrac{3}{24}=\dfrac{-29}{24}\)
g) Ta có: \(\left(\dfrac{1}{2}\right)^{15}\cdot\left(\dfrac{1}{4}\right)^{20}\)
\(=\left(\dfrac{1}{2}\right)^{15}\cdot\left(\dfrac{1}{2}\right)^{40}\)
\(=\left(\dfrac{1}{2}\right)^{55}\)
\(=\dfrac{1}{2^{55}}\)
h) Ta có: \(\dfrac{5^4\cdot20}{25^5\cdot4^5}\)
\(=\dfrac{5^4\cdot5\cdot2^2}{5^{10}\cdot2^{10}}\)
\(=\dfrac{5^5}{5^{10}}\cdot\dfrac{2^2}{2^{10}}\)
\(=\dfrac{1}{5^5}\cdot\dfrac{1}{2^8}\)
\(=\dfrac{1}{800000}\)
\(\left(\frac{9}{15}-2,18\right):\left(3\frac{4}{5}+0,2\right)=\left(0,6-2,18\right):\left(3,8+0,2\right)=-1,58:4=-0,395\)
`Answer:`
\(\left(-\frac{1}{3}\right)^2.18-3^5:3^3+\left(-5\right).4\)
\(=\frac{1}{9}.18-3^{5-3}+-20\)
\(=\frac{9.2}{9}-3^2+-20\)
\(=2-9+-20\)
\(=-7+-20\)
\(=-27\)