BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E
a) chứng minh AB=EB
b) chứng minh tam giác BED vuông
c) DE cắt AB tại F, chứng minh AE//FC
BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I
a) chứng minh tam giác IBC cân
b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy
BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm
a)so sánh góc A và góc C
b)chứng minh rằng tam giác ABH = tam giác ACH
c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG
d)tính độ dài AG
e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG
BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F
a)chứng minh tam giác ABE = tam giác DBE
b) chứng minh tam giác BCF cân
c) chứng minh 3 điểm F.D,E thẳng hàng
d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM
BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I
a)chứng minh rằng tam giác BDC = tam giác CEB
b)so sánh góc IBE và góc ICD
c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H
BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm
a)tính BC
b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB
c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE
d) chứng minh BE vuông góc FC
a: Xét ΔBCD vuông tại C và ΔBMD vuông tại M có
BD chung
\(\widehat{CBD}=\widehat{MBD}\)
Do đó: ΔBCD=ΔBMD
b: Ta có: ΔBCD=ΔBMD
=>BC=BM và DC=DM
Xét ΔBCM có BC=BM và \(\widehat{CBM}=60^0\)
nên ΔBCM đều
Ta có: BD là phân giác của góc CBA
=>\(\widehat{CBD}=\widehat{DBA}=\dfrac{\widehat{CBA}}{2}=\dfrac{60^0}{2}=30^0\)
Ta có: ΔBCA vuông tại C
=>\(\widehat{CBA}+\widehat{CAB}=90^0\)
=>\(\widehat{CAB}=90^0-60^0=30^0\)
Xét ΔDBA có \(\widehat{DAB}=\widehat{DBA}\left(=30^0\right)\)
nên ΔDAB cân tại D
c: Xét ΔDCK vuông tại C và ΔDMA vuông tại M có
DC=DM
CK=MA
Do đó: ΔDCK=ΔDMA
=>DK=DA
=>ΔDKA cân tại D
Ta có: BC+CK=BK
BM+MA=BA
mà BC=BM và CK=MA
nên BK=BA
=>ΔBKA cân tại B