K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2016

Từ \(x-y=-3=>\left(x-y\right)^3=\left(-3\right)^3=>x^3-3x^2y+3xy^2-y^3=27\)

\(=>x^3-y^3-3x^2y+3xy^2=27=>x^3-y^3-3xy\left(x-y\right)=27\)

\(=>x^3-y^3-3.10.\left(-3\right)=27=>x^3-y^3+90=27\)

\(=>x^3-y^3=-63=>x^3-y^3-2=-65\)

Vậy.......

21 tháng 12 2020

Ta có: \(x^2+y^2-z^2\)

\(=\left(x+y\right)^2-z^2-2xy\)

\(=\left(x+y+z\right)\left(x+y-z\right)-2xy\)

\(=-2xy\)

Ta có: \(x^2+z^2-y^2\)

\(=\left(x+z\right)^2-y^2-2xz\)

\(=\left(x+y+z\right)\left(x+z-y\right)-2xz\)

\(=-2xz\)

Ta có: \(y^2+z^2-x^2\)

\(=\left(y+z\right)^2-x^2-2yz\)

\(=\left(x+y+z\right)\left(y+z-x\right)-2yz\)

\(=-2yz\)

Ta có: \(\dfrac{xy}{x^2+y^2-z^2}+\dfrac{xz}{x^2+z^2-y^2}+\dfrac{yz}{y^2+z^2-x^2}\)

\(=\dfrac{xy}{-2xy}+\dfrac{xz}{-2xz}+\dfrac{yz}{-2yz}\)

\(=\dfrac{1}{-2}+\dfrac{1}{-2}+\dfrac{1}{-2}\)

\(=\dfrac{-3}{2}\)

20 tháng 10 2021

2)3x2-6xy+3y2=3(x2-2xy+y2)=3(x-y)2

3)3(x-y)-5y(y-x)=3(x-y)+5y(x-y)=(x-y)(3+5y)

5)(x+y)3-(x-y)3=[(x+y)-(x-y)][(x+y)2+(x+y)(x-y)+(x-y)2]=(x+y-x+y)(x2+2xy+y2+x2-y2+x2-2xy+y2)=2y(3x2+y2)

6)3x2-5x+2=3x2-2x-3x+2=(3x2-3x)-(2x-2)=3x(x-1)-2(x-1)=(x-1)(3x-2)

a: \(M=\left(\dfrac{-3}{7}x^3y\right)\cdot\dfrac{7xy^3}{12}-x^2y^2\cdot\left(-\dfrac{3}{4}x^2y^2\right)\)

\(=\dfrac{-1}{4}x^4y^4+\dfrac{3}{4}x^4y^4\)

\(=\dfrac{1}{2}x^4y^4\)

b: Hệ số là 1/2

Biến là \(x^4;y^4\)

bậc là 4+4=8

c: Thay x=-1 và y=-2 vào M, ta được:

\(M=\dfrac{1}{2}\left(-1\right)^4\cdot\left(-2\right)^4=\dfrac{1}{2}\cdot16=8\)

24 tháng 2 2022

\(A=-5x^3y^2\)

18 tháng 10 2021

\(a,A=\left(x+y\right)^2-9z^2=\left(x+y-3z\right)\left(x+y+3z\right)\\ A=\left(5+7-36\right)\left(5+7+36\right)=-24\cdot48=-1152\\ b,B=\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)=\left(2x+y\right)\left(2x-y-1\right)\\ B=\left(2+2\right)\left(2-2-1\right)=4\cdot\left(-1\right)=-4\)

22 tháng 7 2021

Đây nhé ta thêm bớt:

\(x^2+xy+y^2=x^2+y^2+2xy-xy=\left(x+y\right)^2-xy=\left(-2\right)^2-xy=4-xy\)

20 tháng 7 2021

tìm gtnn hay sao bạn?

30 tháng 9 2020

a. Ta có : (x + y)[(x - y)2 + xy]

= (x + y)(x2 - 2xy + y2 + xy)

= (x + y)(x2 - xy + y2)

= x3 + y3 

b. Ta có : x3 + y3 - xy(x + y) 

= x3 + y3 - x2y - xy2

=x2(x - y) + y2(y - x)

= (x - y)(x2 - y2)

= (x - y)2.(x + y) đpcm

c) Ta có (x + y)3 - 3xy(x + y)

= (x + y)[(x + y)2 - 3xy)

= (x + y)(x2 + 2xy + y2 - 3xy)

= (x + y)(x2 - xy + y2) (đpcm)

30 tháng 9 2020

a) VP = ( x + y )( x2 - 2xy + y2 + xy ) = ( x + y )( x2 - xy + y2 ) = x3 + y3 = VT ( đpcm )

b) VP = ( x + y )( x - y )2 = ( x + y )( x2 - 2xy + y2 ) = x3 - 2x2y + xy2 + x2y - 2xy2 + y3 = x3 + y3 - x2y - xy2 = x3 + y3 - xy( x + y ) = VT ( đpcm )

c) VP = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 = x3 + y3 = ( x + y )( x2 - xy + y2 ) = VT ( đpcm )