Giải các bất phương trình a (x-1)(2-x)>0 b x2 -4x+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(\Leftrightarrow x^2-5x+6< =0\)
=>(x-2)(x-3)<=0
=>2<=x<=3
b: \(\Leftrightarrow\left(x-6\right)^2< =0\)
=>x=6
c: \(\Leftrightarrow x^2-2x+1>=0\)
\(\Leftrightarrow\left(x-1\right)^2>=0\)
hay \(x\in R\)
1
a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9
(9+x)= -9-x khi 9+x <0 hoặc x <-9
1)pt 9+x=2 với x >_ -9
<=> x = 2-9
<=> x=-7 thỏa mãn điều kiện (TMDK)
2) pt -9-x=2 với x<-9
<=> -x=2+9
<=> -x=11
x= -11 TMDK
vậy pt có tập nghiệm S={-7;-9}
các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd
nhu cau o trên mk lam 9+x>_0 hoặc x>_0
với số âm thi -2x>_0 hoặc x <_ 0 nha
a) \(\left(x^2+2\right)^2-\left(x+2\right)\left(x-2\right)\left(x^2+4\right)-4x\left(x+1\right)\le20\)
\(\Leftrightarrow x^4+4x^2+4-x^4+16-4x^2-4x\le20\)
\(\Leftrightarrow\left(x^4-x^4\right)+\left(4x^2-4x^2\right)-4x+4+16\le20\)
\(\Leftrightarrow-4x+20\le20\)
\(\Leftrightarrow-4x\le20-20\)
\(\Leftrightarrow-4x\le0\)
\(\Leftrightarrow-4x:-4\ge0:-4\)
\(\Leftrightarrow x\ge0\)
Vậy nghiệm của bất phương trình là: \(x\ge0\)
b) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)\ge15\)
\(\Leftrightarrow x^3+8-x^3-2x\ge15\)
\(\Leftrightarrow\left(x^3-x^3\right)+8-2x\ge15\)
\(\Leftrightarrow8-2x\ge15\)
\(\Leftrightarrow-2x\ge15-8\)
\(\Leftrightarrow-2x\ge7\)
\(\Leftrightarrow-2x:-2\le7:-2\)
\(\Leftrightarrow x\le-\dfrac{7}{2}\)
Vậy nghiệm của bất phương trình là \(x\le-\dfrac{7}{2}\)
a: =>x^4+4x^2+4-x^4+16-4x^2-4x<=20
=>-4x+20<=20
=>-4x<=0
=>x>=0
b: =>x^3+8-x^3-2x>=15
=>-2x>=7
=>x<=-7/2