CM
\(\frac{3}{5.2!}\)+\(\frac{3}{5.3!}\)+\(\frac{3}{5.4!}\)+ ..... +\(\frac{3}{5.100!}\)<\(0,6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{3}{5.2!}+\frac{3}{5.3!}+\frac{3}{5.4!}+...+\frac{3}{5.100!}\)
\(=\frac{3}{5}.\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)
\(< \frac{3}{5}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(=\frac{3}{5}.\left(1-\frac{1}{100}\right)\)
\(< \frac{3}{5}.1=\frac{3}{5}=0,6\)
có A= \(\frac{3}{5.2!}\)+\(\frac{3}{5.3!}\)+...+\(\frac{3}{5.100!}\)=\(\frac{3}{5}\)(\(\frac{1}{2!}\)+\(\frac{1}{3!}\)+....+\(\frac{1}{100!}\))
đặt vế trong ngoặc là B. Đặt \(\frac{1}{2!}\)+\(\frac{2}{3!}\)+...+\(\frac{99}{100!}\)=C ta có C=\(\frac{2-1}{2!}\)+\(\frac{3-1}{3!}\)+....+\(\frac{100-1}{100!}\)
=\(\frac{2}{2!}\)-\(\frac{1}{2!}\)+\(\frac{1}{2!}\)-\(\frac{1}{3!}\)+...+\(\frac{1}{99!}\)-\(\frac{1}{100!}\)=1-\(\frac{1}{100!}\)<1
mà \(\frac{1}{2!}\)=\(\frac{1}{2!}\);\(\frac{1}{3!}\)<\(\frac{2}{3!}\);....;\(\frac{1}{100!}\)<\(\frac{99}{100!}\)\(\Rightarrow\)B<C<1\(\Rightarrow\)B.\(\frac{3}{5}\)<1.\(\frac{3}{5}\)=\(\frac{3}{5}\)=0.6\(\Rightarrow\)A<0.6
Cũng đơn giản mà em nhớ k cho chị nha !
Đề còn thiếu 1 điều kiện nữa là \(n>0\)
Đặt \(A=\frac{4}{5.2!}+\frac{4}{5.3!}+\frac{4}{5.4!}+...+\frac{4}{5.n!}\) ta có :
\(A=\frac{4}{5}\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{n!}\right)\)
Để \(A< 0,8\) thì \(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{n!}< 1\)
Đặt \(B=\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{n!}\) ta có :
\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(B< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}+\frac{1}{n}\)
\(B< 1-\frac{1}{n}< 1\)
\(\Rightarrow\)\(B< 1\) ( đpcm )
Suy ra : \(A=\frac{4}{5}.B=0,8.B< 0,8\) ( vì \(B< 1\) )
Vậy \(\frac{4}{5.2!}+\frac{4}{5.3!}+\frac{4}{5.4!}+...+\frac{4}{5.n!}< 0,8\)
Chúc bạn học tốt ~
Theo đầu bài ta có:
\(\frac{3}{5\cdot2!}+\frac{3}{5\cdot3!}+\frac{3}{5\cdot4!}+...+\frac{3}{5.100!}< 0,6\)
\(\Rightarrow\frac{3}{5}\cdot\frac{1}{2!}+\frac{3}{5}\cdot\frac{1}{3!}+\frac{3}{5}\cdot\frac{1}{4!}+...+\frac{3}{5}\cdot\frac{1}{100!}< \frac{3}{5}\)
\(\Rightarrow\frac{3}{5}\cdot\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)< \frac{3}{5}\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}< 1\)( điều cần chứng minh )
Mà \(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}< 1-\frac{1}{100}< 1\)( đã chứng minh được )
Vậy \(\frac{3}{5\cdot2!}+\frac{3}{5\cdot3!}+\frac{3}{5\cdot4!}+...+\frac{3}{5\cdot100!}< 0,6\)( đpcm )