(1+1/3)*(1+1/8)*(1+1/15)*...*(1+1/9999)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1 + 1/3) × (1 + 1/8) × (1 + 1/15) × ... × (1 + 1/9999)
= 4/3 × 9/8 × 16/15 × ... × 10000/9999
= 2.2/1.3 × 3.3/2.4 × 4.4/3.5 × ... × 100.100/99.101
= 2.3.4...100/1.2.3...99 × 2.3.4...100/3.4.5...101
= 100 × 2/101
= 200/101
Ủng hộ mk nha ♡_♡
mình trả lời cho bạn nè !
=4/3x9/8x16/15x...x10000/9999
=(4x9x16x...x10000)/(3x8x15x...x9999)
=(2x2x3x3x4x4x...x100x100)/(1x3x2x4x3x5x...x99x101)
=(2x2x3x3x4x4x...x100x100)/(1x2x3x3x4x4x5x5x...x100x100x101)
=2/101
cách làm của mình giống Công Chúa Giá Băng nha!K cho mình đi,mình có 200 nick luôn!
A = ( 1 + \(\dfrac{1}{3}\))\(\times\)( 1+ \(\dfrac{1}{8}\))\(\times\)( 1 + \(\dfrac{1}{15}\))\(\times\)...\(\times\)(1+\(\dfrac{1}{9999}\))
A = \(\dfrac{3+1}{3}\)\(\times\)\(\dfrac{8+1}{8}\)\(\times\)\(\dfrac{15+1}{15}\)\(\times\)...\(\times\)\(\dfrac{9999+1}{9999}\)
A = \(\dfrac{4}{3}\)\(\times\)\(\dfrac{9}{8}\)\(\times\)\(\dfrac{16}{15}\)\(\times\)\(\dfrac{10000}{9999}\)
A = \(\dfrac{2\times2}{1\times3}\)\(\times\dfrac{3\times3}{2\times4}\)\(\times\)\(\dfrac{4\times4}{3\times5}\)\(\times\)...\(\times\)\(\dfrac{100\times100}{99\times101}\)
A =\(\dfrac{2\times2\times\left(3\times4\times..\times99\right)\times\left(3\times4\times..99\right)\times100\times100}{1\times2\times\left(3\times4\times..99\right)\times\left(3\times4\times..99\right)\times100\times101}\)
A = \(\dfrac{200}{101}\)