Cho tam giác ABC vuông tại A có AB = 9cm, AC = 12cm
a) Tính BC.
b) Tia phân giác của góc B cắt cạnh AC tại D. Kẻ DE BC tại E. Chứng minh AD = DE.
c) So sánh AD và DC?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do tam giác ABC vuông tại A nên BC2 = AB2 + AC2 = 122 + 92 = 225
Khi đó BC = 15. Chọn A
a, Áp dụng Đ. L py-ta-go vào tg ABC vuông tại A, ta có:
BC2=AC2+AB2
=>BC2=122+92
=144+81
=225.
=>BC=15(cm).
b, Xét tg ABD và tg ABE, có:
góc A = góc E(=90o).
BD chung.
góc ABD= góc DBE(tia phân giác)
=>tg ABD= tg EBD(ch-gn)
=>AD=DE(2 cạnh tương ứng)
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AH^2=CH.BH\Rightarrow BH=\dfrac{AH^2}{CH}=\dfrac{144}{9}=16\)cm
-> BC = CH + BH = 9 + 16 = 25 cm
* Áp dụng hệ thức : \(AB^2=BH.BC=16.25=400\Rightarrow AB=20\)cm
Áp dụng đlí Pytago tam giác ABC vuông tại A
\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=625-400=225\)
=> AC = 15 cm
Xét tam giác AHC vuông tại H, theo định lý Py-ta-go ta có:
AC2 = AH2 + HC2 = 122 + 92 = 225
\(\Rightarrow\) AC = \(\sqrt{225}\) = 15 (cm)
Xét tam giác ABC vuông tại A, đường cao AH, theo hệ thức lượng trong tam giác vuông ta có:
AC2 = BC.HC
\(\Leftrightarrow\) BC = \(\dfrac{AC^2}{HC}\) = \(\dfrac{15^2}{9}\) = 25 (cm)
Xét tam giác ABC vuông tại A, theo định lý Py-ta-go ta có:
BC2 = AB2 + AC2
\(\Leftrightarrow\) AB2 = BC2 - AC2 = 252 - 152 = 400
\(\Rightarrow\) AB = \(\sqrt{400}\) = 20 (cm)
Vậy ...
Chúc bn học tốt!
Tam giác ABC vuông tại A nên áp dụng định lí Pytago ta có:
AB2 + AC2 = BC2
<=> 122+92 = BC2
<=> BC2 =225
Mà BC >0 => BC =15 cm
Ta có : SABC = 1/2.AB.AC=1/2.AH.BC
<=> AB.AC=AH.BC
<=> 12.9=AH.15
<=> AH=7,2 ( cm)
Tam giác ABH vuông tại H ( AH vuông góc BC ) nên áp dụng định lí Pytago ta có
AB2=BH2+AH2
<=> 122=BH2+7,22
<=>BH2= 92,16
Mà BH >0 => BH=9,6(cm)
Ta có BH+CH=BC ( H nằm giữa B và C)
<=> 9,6 +CH = 15
<=> CH = 5,4 ( cm)
Vậy AH= 7,2 ( cm)
BH=9,6 (cm)
CH= 5,4 (cm)
Tk mình nhé!!
~~ Học tốt~~
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA
b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
AH=9*12/15=7,2cm
c: AD là phân giác
=>AD/DC=BA/BC=AH/AC
=>AD*AC=AH*DC
a: BC^2=AB^2+AC^2
=>ΔABC vuông tại A
b: CD=căn AC^2+AD^2=13cm
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=9^2+12^2=225\)
=>\(BC=\sqrt{225}=15\left(cm\right)\)
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
=>DA=DE
c: Ta có: DA=DE
mà DE<DC(ΔDEC vuông tại E)
nên DA<DC