K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2016

ko phải tìm số nguyên a;b à 

17 tháng 7 2016

j cũng dc nói nói tìm dc là dc -_-

19 tháng 7 2016

Ta có : \(2a^2+2b^2+2ab-8a-8b+10=0\)

\(\Leftrightarrow\left(a^2+2ab+b^2\right)+\left(a^2-8a+16\right)+\left(b^2-8b+16\right)=22\)

\(\Leftrightarrow\left(a+b\right)^2+\left(a-4\right)^2+\left(b-4\right)^2=22\). Dễ thấy \(\left(a+b\right)^2\le22\Rightarrow a+b< \sqrt{22}< \sqrt{16}=4\)

Phân tích : \(22=3^2+3^2+2^2\).

Từ đó chia ra các trường hợp , ta chọn được (a;b) = (1;1) ; (1;2) ; (2;1)

18 tháng 9 2018

a) \(a^2+25b^2+17+10b-8a=0\)

\(\Rightarrow a^2-8a+16+25b^2+10b+1=0\)

\(\Rightarrow\left(a-4\right)^2+\left(5b+1\right)^2=0\)

\(\left(a-4\right)^2\ge0\) với mọi a

\(\left(5b+1\right)^2\ge0\) với mọi b

\(\Rightarrow\left(a-4\right)^2+\left(5b+1\right)^2\ge0\) với mọi a,b

\(\left(a-4\right)^2+\left(5b+1\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a-4\right)^2=0\\\left(5b+1\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a-4=0\\5b+1=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=4\\5b=-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-\dfrac{1}{5}\end{matrix}\right.\)

28 tháng 8 2017

\(B=2a^2+2b^2+2ab-10a-8b+19\)

\(B=\left(a^2+2ab+b^2\right)+\left(a^2-10a+25\right)+\left(b^2-8b+16\right)-22\)

\(B=\left(a+b\right)^2+\left(a-5\right)^2+\left(b-4\right)^2-22\ge22\)

Vậy MIN B=22 <=> a=5 b=4

5 tháng 5 2019

a, \(\left(a^2+b^2-2ab+2a-2b+1\right)+\left(b^2-2b+1\right)=0\)

=> \(\left(a-b+1\right)^2+\left(b-1\right)^2=0\)

Mà \(\left(a-b+1\right)^2\ge0,\left(b-1\right)^2\ge0\)

=> \(\hept{\begin{cases}a-b+1=0\\b=1\end{cases}\Rightarrow\hept{\begin{cases}a=0\\b=1\end{cases}}}\)

b,Tương tự 

\(\left(a-2b+1\right)^2+\left(b-1\right)^2=0\)

=>\(\hept{\begin{cases}a=1\\b=1\end{cases}}\)

31 tháng 10 2017

đúng rồi

1 tháng 11 2017

 chó điên

NV
26 tháng 12 2021

\(a\ge2b\Rightarrow\dfrac{a}{b}\ge2\)

\(P=2\left(\dfrac{a}{b}\right)+\left(\dfrac{b}{a}\right)-2=\dfrac{a}{4b}+\dfrac{b}{a}+\dfrac{7}{4}\left(\dfrac{a}{b}\right)-2\ge2\sqrt{\dfrac{ab}{4ab}}+\dfrac{7}{4}.2-2=\dfrac{5}{2}\)

\(P_{min}=\dfrac{5}{2}\) khi \(a=2b\)

13 tháng 6 2018

\(a^2+b^2=2\Rightarrow\hept{\begin{cases}a^2-2=-b^2\\b^2-2=-a^2\end{cases}}\)

\(M=\left(4a^4-8a^2\right)+\left(4b^4-8b^2\right)+8a^2b^2\)

     \(=4a^2\left(a^2-2\right)+4b^2\left(b^2-2\right)+8a^2b^2\)

     \(=4a^2\left(-b^2\right)+4b^2\left(-a^2\right)+8a^2b^2\)      

     \(=-8a^2b^2+8a^2b^2\)

     \(=0\)

13 tháng 6 2018

Huỳnh Chi ơi lúc nãy mình bấm nhầm đây mới là bài thơ

                          Bây giờ ai đã quên chưa

                   Mùa hoa phượng nở khi Hè vừa sang

                           Bâng khuâng dưới ánh nắng vàng

                    Tặng nhau cánh phượng ai mang đi rồi