K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2016

a)x=\(\frac{1}{5}\)

y=\(\frac{2}{5}\)

b)x=28

y=16

8 tháng 11 2016

a)

\(\frac{x}{2}=\frac{y}{4}\)

\(\Rightarrow\frac{x^4}{16}=\frac{y^4}{256}=\frac{x^2y^2}{2^2.4^2}=\frac{4}{64}=\frac{1}{16}\)

\(\Rightarrow\begin{cases}x=\pm1\\y=\pm2\end{cases}\)

Mà 2 ; 4 cùng dấu

=> x ; y cùng dấu

Vậy ........

b)

\(4x=7y\)

\(\Rightarrow\frac{x}{7}=\frac{y}{4}\)

\(\Rightarrow\frac{x^2}{49}=\frac{y^2}{16}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{49}=\frac{y^2}{16}=\frac{x^2+y^2}{49+16}=\frac{260}{65}=4\)

\(\Rightarrow\begin{cases}x=\pm14\\y=\pm8\end{cases}\)

Mày 4 và 7 cùng dấu

=> x ; y cùng dấu

Vậy ........

4 tháng 11 2020

Từ 4x = 7y => \(\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{7}}\)

Đặt \(\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{7}}=k\Rightarrow\hept{\begin{cases}x=\frac{1}{4}k\\y=\frac{1}{7}k\end{cases}}\)

Khi đó : x2 + y2 = 260

<=> ( 1/4k )2 + ( 1/7k )2 = 260

<=> 1/16k2 + 1/49k2 = 260

<=> k2( 1/16 + 1/49 ) = 260

<=> k2.65/784 = 260

<=> k2 = 3136

<=> k = ±56

Với k = 56 => \(\hept{\begin{cases}x=\frac{1}{4}\cdot56=14\\y=\frac{1}{7}\cdot56=8\end{cases}}\)

Với k = -56 => \(\hept{\begin{cases}x=\frac{1}{4}\cdot\left(-56\right)=-14\\y=\frac{1}{7}\cdot\left(-56\right)=-8\end{cases}}\)

18 tháng 7 2016

=>x/7=y/4 va x^2+y^2=260

Ap dung day ti so bang nhau ,ta co:

x^2/49=y^2/16=x^2+y^2/49+16=260/65=4

=>x^2/49=4 =>x^2=196 =>x=+ -14

    y^2/16=4 =>y^2=64 =>y=+ -8

Mk dang con 1 cach do la dat =k

Chuc ban lam bai tot !!!!!

18 tháng 7 2016

Do 4x = 7y => x = 7/4y

Ta có: x2 + y2 = 260

=> \(\left(\frac{7}{4}y\right)^2+y^2=260\)

=> \(\left(\frac{7}{4}\right)^2.y^2+y^2=260\)

=> \(\frac{49}{16}.y^2+y^2=260\)

=> \(y^2.\frac{65}{16}=260\)

=> y2 = \(260:\frac{65}{16}\)

=> y2 = \(260\times\frac{16}{65}\)

=> y2 = 64 = 82 = (-8)2

=> y thuộc {8 ; -8}

+ Nếu y = 8 thì x = 7/4.8 = 14

+ Nếu y = -8 thì x = 7/4.(-8) = -14

Vậy \(\hept{\begin{cases}x=14\\y=8\end{cases};\hept{\begin{cases}x=-14\\y=-8\end{cases}}}\)

15 tháng 11 2015

bài 2 :

ta có x:y:z=3:5:(-2)

=>x/3=y/5=z/-2

=>5x/15=y/5=3z/-6

áp dụng tc dãy ... ta có :

5x/15=y/5=3z/-6=5x-y+3z/15-5+(-6)=-16/4=-4

=>x/3=-=>x=-12

=>y/5=-4=>y=-20

=>z/-2=-4=>z=8

a) Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)

\(\Leftrightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)

Khi đó : \(\left(3k\right)^2+2.\left(4k\right)^2+4.\left(5k\right)^2=141\)

\(\Leftrightarrow141k^2=141\)

\(\Leftrightarrow k^2=1\)

\(\Leftrightarrow k=\pm1\)

TH1 \(\hept{\begin{cases}x=3\\y=4\\z=5\end{cases}}\)

TH2 \(\hept{\begin{cases}x=-3\\y=-4\\z=-5\end{cases}}\)

Vậy.....

9 tháng 1 2020

a)

Theo đề bài ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(x^2+2y^2+4z^2=141\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x^2}{3^2}=\frac{2y^2}{2.4^2}=\frac{4z^2}{4.5^2}=\frac{x^2+2y^2+4z^2}{9+32+100}=\frac{141}{141}=1\)

\(\frac{x}{3}=1\Rightarrow x=3.1=3\)

\(\frac{y}{4}=1\Rightarrow y=4.1=4\)

\(\frac{z}{5}=1\Rightarrow z=5.1=5\)

Vậy x = 3

y=4

z=5