Tính:
a) (2x2y). (9xy4)
b) xy3 + 5 xy3 + ( - 3 xy3 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(M=x^4-xy^3+xy^3-y^4-1\)
\(=x^4-y^4-1\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)-1\)
\(=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)-1\)(1)
Thay x+y=0 vào biểu thức (1), ta được:
\(M=0-1=-1\)
Vậy: Khi x+y=0 thì M=-1
`M=x^4-xy^3+xy^3-y^4-1`
`=x(x^3+y^3)-y^3(x+y)-1`
`=x(x+y)(x^2-xy+y^2)-0-1`(do `x+y=0`)
`=0-0-1`
`=-1`
Thay x = 1, y = -3 vào biểu thức, ta có:
5 – 1.(-3)3 = 5 – 1.(-27) = 5 + 27 = 32
Vậy giá trị của biểu thức 5 – xy3 tại x = 1; y = -3 là 32.
a) 2x(x² - xy³)
= 2x.x² - 2x.xy³
= 2x³ - 2x²y³
b) (12x³y⁵ - 21x⁴y²) : 3x²y²
= 12x³y⁵ : 3x²y² - 21x⁴y² : 3x²y²
= 4xy³ - 7x²
a, 2\(x\).(\(x^2\) - \(xy^3\))
= 2\(x^3\) - 2\(x^2\)y3
b, (12\(x^3\)y5 - 21\(x^4\)y2) :(3\(x^2\)y2)
= 3\(x^2\).y2.(4\(xy^3\) - 7\(x^2\))
= 4\(xy^3\) - 7\(x^2\)
a) (x-y)(x4+x3y+x2y2+xy3+y4) = x(x4+x3y+x2y2+xy3+y4)-y(x4+x3y+x2y2+xy3+y4) =(x5+x4y+x3y2+x2y2+xy4)-(x4y+x3y2+x2y2+xy4+y5) = x5+x4y+x3y2+x2y2+xy4-x4y-x3y2-x2y2-xy4-y5 =x5-y5⇒Điều cần chứng minh
Các câu b d tương tự
1, \(xy^3-x^3y=xy\left(y^2-x^2\right)=xy\left(y-x\right)\left(x+y\right)\)
2, \(5x\left(3y+4x-6\right)\)
3, \(3x\left(2-y\right)\)
4, \(x\left(x^2+2x+1\right)=x\left(x+1\right)^2\)
5, \(x\left(4x^2-12x+9\right)=x\left(2x-3\right)^2\)
6, \(2xy\left(x+2y-5x^2y\right)\)
7, \(x^2\left(x^2+2x+1\right)=x^2\left(x+1\right)^2\)
11, \(\left(x+y\right)\left(x-1\right)\)
\(1,xy^3-x^3y=xy\left(y^2-x^2\right)=xy\left(y-x\right)\left(y+x\right)\\ 2,15xy+20x^2-30x=5x\left(3y+4x-6\right)\\ 3,6x-3xy=3x\left(2-y\right)\\ 4,x^3+2x^2+x=x\left(x^2+2x+1\right)=x\left(x+1\right)^2\\ 5,4x^3-12x^2+9x=x\left(4x^2-12x+9\right)=x\left(2x-3\right)^2\\ 6,2x^2y+4xy^2-10x^3y^2=2xy\left(x+2y-5x^2y\right)\\ 11,x\left(x-1\right)-y\left(1-x\right)=x\left(x-1\right)+y\left(x-1\right)=\left(x-1\right)\left(x+y\right)\)
giup mik vs
ủa thế x bằng bao nhiêu y bằng bao nhiêu