GIÚP MÌNH VỚI
M = ( 1 ; a ; b ; 2)
Tìm 3 tập hợp con phần tử M
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{a}+\frac{1}{a+1}=\frac{a+1+a}{a\left(a+1\right)}\)= \(\frac{2a+1}{a\left(a+1\right)}\)
m/n = ( 1 + \(\frac{1}{1998}\)) + ( \(\frac{1}{2}+\frac{1}{1997}\)) + ( \(\frac{1}{3}+\frac{1}{1996}\)) +......+ ( \(\frac{1}{999}+\frac{1}{1000}\))
m/n = \(\frac{1999}{1998}+\frac{1999}{1997x2}+\frac{1999}{1996x3}+.....+\frac{1999}{999x1000}\)
m/n = 1999 x (\(\frac{1}{1998}+\frac{1}{1997x2}+\frac{1}{1996x3}+.....+\frac{1}{999x1000}\))
=> m chia hết cho 1999
a) Giả sử d1 trùng d2 => có m để
=>\(\int^{2m-3=m}_{m^2-1=-2m-4}\Leftrightarrow\int^{m=3}_{m^2+2m+3=0\left(vônghiem\right)}\)
=> d1 khong trùng với d2
b)
+d1//d2 => m=3
+d1 cắt d2 => m\(\ne\)3
+d1 vuông góc d2 => m(2m-3) =-1 => 2m2 -3m +1 =0 => m =1 ; m = 1/2
Nối A với O.
Ta có: SABN = 1/3 SBNC nên đường cao kẻ từ A và C xuống NB có tỉ lệ 1/3
Suy ra SABO = 1/3 SBOC (chung đáy OB)
Tương tự:
SAMC = 1/2SBMC nên dường cao kẻ từ A và B xuống MC có tỉ lệ 1/2
Suy ra SAOC = 1/2 SBOC (chung đáy OC)
Từ đó ta có: SAOC + SAOB = (1/3+1/2)SBOC = 5/6 SBOC
SAOC + SAOB có 5 phần thì SBOC có 6 phần và SABC có (5+6) 11 phần
Vậy: AOCB = 6/11 SABC