rút gọn biểu thức
B= (a-1)+(a-2)-(a+3)+(a-4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=x\sqrt{2}-\sqrt{\left(x\sqrt{2}+1\right)^2}=x\sqrt{2}-\left|x\sqrt{2}+1\right|\)
b: Khi A=-3 thì \(\left|x\sqrt{2}+1\right|=x\sqrt{2}+3\)
\(\Leftrightarrow x\sqrt{2}+1=-x\sqrt{2}-3\)
\(\Leftrightarrow2x\sqrt{2}=-4\)
hay \(x=-\sqrt{2}\)
\(a,B=\dfrac{-\sqrt{x}-3+\sqrt{x}-3+x+4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\left(x\ge0;x\ne9\right)\\ B=\dfrac{x-2}{x-9}=\dfrac{x-9+7}{x-9}=1+\dfrac{7}{x-9}\in Z\\ \Leftrightarrow x-9\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Leftrightarrow x\in\left\{2;8;11;16\right\}\)
Vậy giá trị x thỏa đề là \(x=2\)
a) \(ĐKXĐ:x>0\)
\(A=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\)
\(\Leftrightarrow A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1\)
\(\Leftrightarrow A=x+\sqrt{x}-2\sqrt{x}-1+1\)
\(\Leftrightarrow A=x-\sqrt{x}\)
b) Để A = 0
\(\Leftrightarrow x-\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=1\left(tm\right)\end{matrix}\right.\)
vậy ...
\(=2\sqrt{3a}-5\sqrt{3a}+\dfrac{3}{2}\sqrt{3a}-10\sqrt{3a}\)
\(=-\dfrac{23}{2}\sqrt{3a}\)
Câu 2:
a: Ta có: \(P=3x-\sqrt{x^2-10x+25}\)
\(=3x-\left|x-5\right|\)
\(=\left[{}\begin{matrix}3x-x+5=2x+5\left(x\ge5\right)\\3x+x-5=4x-5\left(x< 5\right)\end{matrix}\right.\)
b: Vì x=2<5 nên \(P=4\cdot2-5=8-5=3\)
a: \(A=xy^2\left(3+6-4\right)=5xy^2\)
b: Hệ số là 5
Phần biến là \(x;y^2\)
Bậc là 3
c: \(A=5\cdot3\cdot\left(-2\right)^2=15\cdot4=60\)
Bài này áp dụng quy tắc dấu ngoặc
Bạn không hiểu từ bước thứ mấy???
Ta có: \(B=\left(a-1\right)+\left(a-2\right)-\left(a+3\right)+\left(a-4\right)\)
\(B=a-1+a-2-a-3+a-4\)
\(B=\left(a+a-a+a\right)-1-2-3-4\)
\(B=2a+\left[\left(-1\right)+\left(-2\right)+\left(-3\right)+\left(-4\right)\right]\)
\(B=2a+\left(-10\right)=2a+2.\left(-5\right)\)
\(B=2\left[a+\left(-10\right)\right]\)