K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1B

2A

3A

4C

20 tháng 8 2023

Để giải phương trình sin2x/tanx+cotx * (tanx+cotx) = 2sin2x, ta có thể sử dụng các quy tắc và công thức trong giải tích. Đầu tiên, ta có thể thay thế các hàm lượng giác bằng các công thức tương đương. Sau đó, ta có thể rút gọn và giải phương trình.

4 tháng 10 2018

Chọn B.

Ta có: A = (tanx + cotx)2 - ( tanx - cotx)2

= tan2x +  2tanx.cot x + cot2x - ( tan2x - 2tanx.cotx + cot2x)

= 4tanx.cotx = 4.

6 tháng 5 2017

A=(tanx-cotx)2-(tanx-cotx)2=0

Đề sai không bạn ???

7 tháng 5 2017

không sai đâu bạn :((( đề viết vậy mà

NV
25 tháng 5 2020

Chắc bạn ghi sai đề, là \(tanx+cotx=m\) mới đúng (vì \(tanx.cotx=1\))

\(\Rightarrow\left(tanx+cotx\right)^2=m^2\)

\(\Leftrightarrow\left(tanx-cotx\right)^2+4tanx.cotx=m^2\)

\(\Leftrightarrow\left(tanx-cotx\right)^2=m^2-4\)

\(\Rightarrow\left|tanx-cotx\right|=\sqrt{m^2-4}\)

ĐKXĐ: \(x\notin\left\{\dfrac{\Omega}{2}+k\Omega;\Omega+k\Omega\right\}\)

(tanx+7)*tanx+(cotx+7)*cotx=-14

=>\(tan^2x+cot^2x+7\left(tanx+cotx\right)=-14\)

=>\(\left(tanx+cotx\right)^2-2\cdot cotx\cdot tanx+7\left(tanx+cotx\right)+14=0\)

=>\(\left(tanx+cotx\right)^2+7\left(tanx+cotx\right)+12=0\)

=>\(\left(tanx+\dfrac{1}{tanx}+3\right)\left(tanx+\dfrac{1}{tanx}+4\right)=0\)

=>\(\dfrac{tan^2x+3tanx+1}{tanx}\cdot\dfrac{tan^2x+4tanx+1}{tanx}=0\)

=>\(\left[{}\begin{matrix}tan^2x+3tanx+1=0\\tan^2x+4tanx+1=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}tanx=\dfrac{-3+\sqrt{5}}{2}\\tanx=\dfrac{-3-\sqrt{5}}{2}\\tanx=-2+\sqrt{3}\\tanx=-2-\sqrt{3}\end{matrix}\right.\)

=>\(x\in\left\{arctan\left(\dfrac{-3+\sqrt{5}}{2}\right)+k\Omega;arctan\left(\dfrac{-3-\sqrt{5}}{2}\right)+k\Pi;arctan\left(-2+\sqrt{3}\right)+k\Omega;arctan\left(-2-\sqrt{3}\right)+k\Omega\right\}\)