Áp dụng bđt Cô-si, chứng minh:
\(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}>=\sqrt{a}+\)\(\sqrt{b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Áp dụng BĐT Cô-si cho các số dương ta được
abc+bca≥2√abc.bca=2cabc+bca≥2abc.bca=2c
Tương tự
abc+cab≥2babc+cab≥2b
bca+cab≥2abca+cab≥2a
Cộng các vế của BĐT
2(abc+bca+cab)≥2(1a+1b+1c)2(abc+bca+cab)≥2(1a+1b+1c)
↔abc+bca+cab≥1a+1b+1c↔abc+bca+cab≥1a+1b+1c
b/ Áp dụng BĐT Cô-si cho các số dương ta được
abc+bca≥2√abc.bca=2babc+bca≥2abc.bca=2b
Tương tự
abc+cab≥2aabc+cab≥2a
bca+cab≥2cbca+cab≥2c
Cộng các vế của BĐT
2(abc+bca+cab)≥2(a+b+c)2(abc+bca+cab)≥2(a+b+c)
↔abc+bca+cab≥a+b+c
a)Áp dụng Bđt Cô si ta có:
\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{3}{\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)
\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\ge\frac{3\sqrt[3]{abc}}{\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)
Cộng theo vế 2 bđt trên ta có:
\(3\ge\frac{3\left(\sqrt[3]{abc}+1\right)}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
Dấu = khi a=b=c
b)Áp dụng Bđt Cô-si ta có:
\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc^2a}{ab}}=2c\)
\(\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca^2b}{bc}}=2a\)
\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{b^2ac}{ac}}=2b\)
Cộng theo vế 3 bđt trên ta có:
\(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)
\(\Rightarrow\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)
Đấu = khí a=b=c
#)Giải :
Áp dụng BĐT Cauchy cho hai số không âm :
\(\frac{\left(a+b\right)^2}{2}+\frac{a+b}{4}=\frac{a+b}{2}\left(a+b+\frac{1}{2}\right)\ge\sqrt{ab}\left(a+b+\frac{1}{2}\right)\left(1\right)\)
Ta có: \(\sqrt{ab}\left(a+b+\frac{1}{2}\right)\ge a\sqrt{b}+b\sqrt{a}\Leftrightarrow\sqrt{ab}\left(a+b+\frac{1}{2}\right)\ge\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\)
\(\Leftrightarrow a+b+\frac{1}{2}\ge\sqrt{a}+\sqrt{b}\Leftrightarrow a-\sqrt{a}+\frac{1}{4}+b-\sqrt{b}+\frac{1}{4}\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\frac{1}{2}\right)^2+\left(\sqrt{b}-\frac{1}{2}\right)^2\ge0\Leftrightarrow\sqrt{ab}\left(a+b+\frac{1}{2}\right)\ge a\sqrt{b}+b\sqrt{a}\left(2\right)\)
Từ (1) và (2) \(\Rightarrowđpcm\)
\(A=\frac{\left(x+4\right)-\sqrt{x}}{2\sqrt{x}}\ge\frac{2\sqrt{4x}-\sqrt{x}}{2\sqrt{x}}=\frac{3\sqrt{x}}{2\sqrt{x}}=\frac{3}{2}\)
\(A_{min}=\frac{3}{2}\) khi \(x=4\)
\(B=\frac{x+3+2\sqrt{x}}{\sqrt{x}}\ge\frac{2\sqrt{3x}+2\sqrt{x}}{\sqrt{x}}=2\sqrt{3}+2\)
\(B_{min}=2\sqrt{3}+2\) khi \(x=3\)
Xem lại đề câu C, với \(x>0\) thì \(C_{min}\) ko tồn tại
Bạn ơi cho mình hỏi tại sao \(\frac{\left(x+4\right)-\sqrt{x}}{2\sqrt{x}}\)lại lớn hơn hoặc bằng \(\frac{2\sqrt{4x}-\sqrt{x}}{2\sqrt{x}}\)vậy ạ?
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\dfrac{a}{\sqrt{a^2+1}}=\dfrac{a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
\(\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\). Thiếp lập 2 BĐT còn lại:
\(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{b}{a+b}\right);\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{b+c}\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(A\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{1}{2}\cdot3=\dfrac{3}{2}\)
Xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
Bạn chú ý : Bài của bạn cần phải có điều kiện a,b > 0
\(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}=\frac{\left|a\right|}{\sqrt{b}}+\frac{\left|b\right|}{\sqrt{a}}=\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\)(1)
Ta xét : \(A=\left(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\right)\left(\sqrt{a}+\sqrt{b}\right)=\left(\frac{a\sqrt{a}}{\sqrt{b}}+\frac{b\sqrt{b}}{\sqrt{a}}\right)+\left(a+b\right)\)
Áp dụng bất đẳng thức Cauchy được : \(\frac{a\sqrt{a}}{\sqrt{b}}+\frac{b\sqrt{b}}{\sqrt{a}}\ge2\sqrt{\frac{ab\sqrt{ab}}{\sqrt{ab}}}=2\sqrt{ab}\)
\(\Rightarrow A\ge a+b+2\sqrt{ab}=\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\Rightarrow\left(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\right)\left(\sqrt{a}+\sqrt{b}\right)\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\Leftrightarrow\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\) (2)
Từ (1) và (2) ta có đpcm