K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

a) Theo đầu bài ta có:
\(\orbr{\begin{cases}\frac{n}{n+1}=\frac{n\left(n+4\right)}{\left(n+1\right)\left(n+4\right)}=\frac{n^2+2n+2n}{\left(n+1\right)\left(n+4\right)}\\\frac{n+1}{n+4}=\frac{\left(n+1\right)\left(n+1\right)}{\left(n+1\right)\left(n+4\right)}=\frac{n^2+2n+1}{\left(n+1\right)\left(n+4\right)}\end{cases}}\)
Nếu \(n=0\Rightarrow2n=0< 1\Rightarrow\frac{n^2+2n+2n}{\left(n+1\right)\left(n+4\right)}< \frac{n^2+2n+1}{\left(n+1\right)\left(n+4\right)}\Rightarrow\frac{n}{n+1}< \frac{n+1}{n+4}\)
Nếu \(n\ge1\Rightarrow2n\ge2>1\Rightarrow\frac{n^2+2n+2n}{\left(n+1\right)\left(n+4\right)}>\frac{n^2+2n+1}{\left(n+1\right)\left(n+4\right)}\Rightarrow\frac{n}{n+1}>\frac{n+1}{n+4}\)

13 tháng 11 2018

1)2n+5-2n-1

=>4 chia hết cho 2n-1

ước của 4 là 1 2 4

2n-1=1=>n=.....

tiếp với 2 và 4 nhé

28 tháng 3 2022

Ta có: n-2/(n+1)+8/(n+1)

    =(n-2+8)/(n+1)

    =n+6/(n+1)

   => n+1+5 chia hết cho n+1

  =>5 chia hết cho n+1

=> n+1 /(in/) Ư(5)={-1;1;5;-5}

  Mà n là số tự nhiên

=> n+1 /(in/) {1;5}

Ta có bảng sau:

n+1|  1  |5

n    |   0  |4

VẬY n /(in/) {0;4}

28 tháng 3 2022

/(in/)=\(in\)= thuộc nha mik viết lộn á

24 tháng 9 2023

a) Dễ thấy rằng n và n + 1 là hai số tự nhiên liên tiếp nên hai số này phải là ước của 210.

Ta có 210 = 2.3.5.7 = 14.15, do đó n = 14.

b) Ta có 1 + 2 + 3 + ... + n = n(n + 1) : 2

Do đó n(n + 1) : 2 = 300

Hay n(n + 1) = 300.2 = 600

Dễ thấy rằng n và n + 1 là hai số tự nhiên liên tiếp nên hai số này phải là ước của 600.

Ta có 600 = 23.3.52 = 24.25; do đó n = 24.

AH
Akai Haruma
Giáo viên
24 tháng 9 2023

Lời giải:

a. Ta thấy: $n(n+1)=210=14\times (14+1)$ nên $n=14$

b.

$1+2+3+....+n=300$

$n(n+1):2=300$

$n(n+1)=2.300=600=24\times (24+1)$

$\Rightarrow n=24$

14 tháng 12 2021

\(\Rightarrow n-1+5⋮n-1\\ \Rightarrow n-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow n=6\left(n>2\right)\)

28 tháng 7 2023

Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.

Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.

Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.

Vậy số tự nhiên n cần tìm là 3.

28 tháng 7 2023

Bài 1

...=((2n-2):2+1):2=756

(2(n-1):2+1)=756×2

n-1+1=1512

n=1512

10 tháng 12 2014

\(\frac{n+4}{n+1}=\frac{\left(n+1\right)+3}{n+1}=1+\frac{3}{n+1}\)suy ra n+1 pharii là ước của 3 từ đó suy ra n