K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(1)

Xét ΔADC có 

Q là trung điểm của AD

P là trung điểm của CD

Do đó: QP là đường trung bình của ΔADC

Suy ra: QP//AC và \(QP=\dfrac{AC}{2}\)(2)

Từ (1) và (2) suy ra MN//QP và MN=QP

Xét tứ giác MNPQ có 

MN//QP(cmt)

MN=QP(cmt)

Do đó: MNPQ là hình bình hành

Xét ΔABD có 

Q là trung điểm của AD

M là trung điểm của AB

Do đó: QM là đường trung bình của ΔABD

Suy ra: QM//DB và \(QM=\dfrac{DB}{2}\)

hay \(QM=\dfrac{AC}{2}\)(3)

Từ (2) và (3) suy ra QM=QP

Hình bình hành MNPQ có QM=QP(cmt)

nên MNPQ là hình thoi

26 tháng 10 2016

trong sgk có cm í bn nếu thiếu thì lên mạng ghi nó sẽ ra           

27 tháng 9 2017

có ai làm cụ thể đc ko?

22 tháng 9 2016

1) Áp dụng tính chất đoạn chắn

22 tháng 9 2016


Dài thế

a: Xét ΔKMI và ΔKNH có

\(\widehat{KMI}=\widehat{KNH}\)(hai góc so le trong, MI//HN)

KM=KN

\(\widehat{IKM}=\widehat{HKN}\)(hai góc đối đỉnh)

Do đó: ΔKMI=ΔKNH

=>KI=KH

=>K là trung điểm của HI

Xét tứ giác MINH có

K là trung điểm chung của MN và HI

nên MINH là hình bình hành

b: Ta có: MNPQ là hình bình hành

=>MP cắt NQ tại trung điểm của mỗi đường

=>O là trung điểm chung của MP và NQ

Xét ΔNMP có

PK,NO là các đường trung tuyến

PK cắt NO tại H

Do đó: H là trọng tâm của ΔNMP

Xét ΔMNP có

PK là trung tuyến

H là trọng tâm

Do đó: \(PH=\dfrac{2}{3}PK\)

PH+HK=PK

=>\(HK+\dfrac{2}{3}PK=PK\)

=>\(HK=\dfrac{1}{3}PK\)

=>PH=2KH

mà KI=2KH(K là trung điểm của IH)

nên PH=HI

=>H là trung điểm của PI

c: Xét ΔMNP có

NO là đường trung tuyến

H là trọng tâm

Do đó: OH=1/3NO

=>OH=1/3QO

QO+OH=QH

=>\(\dfrac{1}{3}QO+QO=QH\)

=>\(QH=\dfrac{4}{3}QO\)

=>\(\dfrac{QO}{QH}=\dfrac{3}{4}\)

Xét ΔQHP có OF//HP

nên \(\dfrac{QO}{QH}=\dfrac{QF}{QP}\)

=>\(\dfrac{QF}{QP}=\dfrac{3}{4}\)

giúp mik với ak

26 tháng 9 2019

Tương tự bài 3A