K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

hay nhi

5 tháng 2 2020

\(D=x^2+4y^2-2xy-6y-10x+10y+32\)

\(=x^2-2.x\left(y+5\right)+\left(y+5\right)^2-\left(y+5\right)^2+4y^2+4y+32\)

\(=\left(x-y-5\right)^2-y^2-10y-25+4y^2+4y+32\)

\(=\left(x-y-5\right)^2+3y^2-6y+7\)

\(=\left(x-y-5\right)^2+3\left(y^2-2y+1\right)+4\)

\(=\left(x-y-5\right)^2+3\left(y-1\right)^2+4\)

Ta thấy : \(\left(x-y-5\right)^2+3\left(y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow D\ge4\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-5=0\\y-1=0\end{cases}}\)  \(\Leftrightarrow\hept{\begin{cases}x=6\\y=1\end{cases}}\)

Vậy : min \(D=4\) tại \(x=6,y=1\)

19 tháng 4 2019

Do A nhỏ nhất 

Suy ra : x^2 = 0, 2y^2 = 0 , 4y = 0 .......( tất cả số hạng bằng 0) 

Suy ra A= 2019

30 tháng 7 2019

\(A=x^2+2y^2+4y+2xy-4x+2019\)

\(A=\left(x^2+y^2-2^2+2xy-4y-4x\right)+\left(y^2+8y+4^2\right)+2007\)

\(A=\left(x+y-2\right)^2+\left(y+4\right)^2+2007\ge2007\)

Vậy \(Min_A=2007\) khi \(\hept{\begin{cases}x+y-2=0\\y+4=0\end{cases}}\hept{\begin{cases}x+y=2\\y=-4\end{cases}}\hept{\begin{cases}x=6\\y=4\end{cases}}\)

24 tháng 11 2018

A=(x^2+2xy+y^2)+(y^2-4y+4)-1
=(x+y)^2+(y-2)^2-1 \(\ge\) -1
Dấu "=" xảy ra <=> y=2,x=-2
Nhớ k nha


 

25 tháng 12 2020

\(A=x^2+2x\left(y+1\right)+\left(y+1\right)^2-\left(y+1\right)^2+2y^2-4y+2028\)

\(=\left(x+y+1\right)^2-y^2-2x-1+2y^2-4y+2028\)

\(=\left(x+y+1\right)^2-6x+y^2+2027\)

\(=\left(x+y+1\right)+\left(y-3\right)^2+2018\ge2018\forall x;y\) (do...)

=> MinA = 2018 \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\)

6 tháng 7 2015

\(=\left(x^2+4x+4\right)+\left(y^2+4y+4\right)+\left(x^2-2xy+y^2\right)+2=\left(x+2\right)^2+\left(y+2\right)^2+\left(x-y\right)^2+2\ge2\)

=> Min =2 <=> x=y=-2

1 tháng 5 2017

Để D có giá trị nhỏ nhất thì x^2 ;4y^2 ;2xy; 6y; 10(x-y) phải có giá trị nhỏ nhất

   Mà x^2 >0 hoặc x^2=0 ( với mọi x)

        4y^2 >0 hoặc 4y^2 =0 (với mọi y)

  =>  x^2 =0   suy ra x =0         (4)

       4y^2 =0    suy ra y =0          (5)

ta có x= 0 ;y=0    => 6y =0 (1)

                               2xy = 0  (2)

                               10(x-y)=0  (3)

Từ (1);(2);(3);(4);(5) => D= 0+0-0-0-0+32

                                => D= 32

k minh nha

1 tháng 5 2017

Ta có:

\(D=x^2+4y^2-2xy-6y-10\left(x-y\right)+32\)

\(=x^2+4y^2-2xy+4y-12x+32\)

\(=\left(x^2+y^2+36-2xy-12x+12y\right)+\left(3y^2-8y+\frac{16}{3}\right)-\frac{28}{3}\)

\(=\left(x-y-6\right)^2+\left(\sqrt{3}y-\frac{4}{\sqrt{3}}\right)^2-\frac{28}{3}\ge-\frac{28}{3}\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-6=0\\\sqrt{3}y-\frac{4}{\sqrt{3}}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{22}{3}\\y=\frac{4}{3}\end{cases}}\)

Vậy \(D_{min}=-\frac{28}{3}\Leftrightarrow\hept{\begin{cases}x=\frac{22}{3}\\y=\frac{4}{3}\end{cases}}\)

21 tháng 7 2018

A = x2 -2xy + 2y2+ 2x - 10y -5

= x2 - 2xy + y2 + y2 + 2x - 2y - 8y -5

= [(x2 - 2xy + y2) + 2 ( x - y) + 1]2 + (y2 - 8y + 16) - 22     

= [ (x - y)2 + 2(x - y) + 1]2 + (y - 4)2  - 22

= (x - y + 1)2 + ( y - 4)2 - 22  -22

=> Min của A = -22 khi {y−4=0x−y+1=0{y−4=0x−y+1=0 => {y=4x−3=0{y=4x−3=0 => {y=4x=3{y=4x=3

Vậy Min của A = 2016 khi x = 3 và y = 4.

21 tháng 7 2018

MinA=-22 khi \(\hept{\begin{cases}\left(y-4\right)^2=0\\\left(x-y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=4\\x=3\end{cases}}}\)

1 tháng 10 2017

Ta có : \(x^2+y^2-2x+4y+1\)

\(=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)-4\)

\(A=\left(x-1\right)^2+\left(y+2\right)^2-4\)

Vì \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\in R\)

Nên : \(A=\left(x-1\right)^2+\left(y+2\right)^2-4\ge-4\forall x,y\in R\)

Vậy \(A_{min}=-4\) khi x = 1 và y = -2