tìm x sao cho x^2(x-3)(x+5)>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : (x2 + 1).(x + 3) = 0
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=-1\left(\text{loại}\right)\\x=-3\end{cases}}\)
a. (x - 5).(x + 2) < 0
Vì x - 5 < x + 2 nên xét trường hợp:
x - 5 < 0; x + 2 > 0
=> x < 5; x > -2
=> -2 < x < 5
=> x thuộc {-1; 0; 1; 2; 3; 4}
b. (x - 3) . (x + 2) > 0
+) x - 3 < 0; x + 2 < 0
=> x < 3; x < -2
=> x -2 thì thỏa mãn
+) x - 3 > 0; x + 2 > 0
=> x > 3; x > -2
=> x > 3 là thỏa mãn.
a: (x-1)(x-2)>0
=>x-2>0 hoặc x-1<0
=>x>2 hoặc x<1
b: \(\left(x-2\right)^2\cdot\left(x+1\right)\left(x-4\right)< 0\)
=>(x+1)(x-4)<0
=>-1<x<4
c: \(\dfrac{x^2\left(x-3\right)}{x-9}< 0\)
=>x-3/x-9<0
=>3<x<9
c; \(\dfrac{5}{x}\) < 1 (đk \(x\ne\) 0)
⇒ \(\dfrac{5}{x}\) - 1 < 0 ⇒ \(\dfrac{5-x}{x}\) < 0; 5 - \(x=0\) ⇒ \(x=5\)
Lập bảng ta có:
\(x\) | 0 5 |
\(x-5\) | + | + 0 - |
\(x\) | - 0 + | + |
\(\dfrac{x-5}{x}\) | - || + 0 - |
Theo bảng trên ta có \(x\) \(\in\) ( - ∞; 0) \(\cup\) (5; +∞)
Vậy tập hợp nghiệm của bất phương trình đã cho là:
S = (- ∞; 0) \(\cup\) (5 ; + ∞)
Vì x2\(\ge\)0 mọi x
\(\rightarrow\)(x-3)(x+5)>0 để x2(x-3)(x+5)>0
TH1:x-3>0 và x+5>0
\(\rightarrow\)x >3 và x >-5
\(\rightarrow\)x>3
TH2 x-3<0 và x+5<0
\(\rightarrow\)x<3 và x <-5
\(\rightarrow\)x<-5
Vậy x>3 và x<-5 thì x2(x-3)(x+5)>0