Tìm GTNN của N
N = | X - 2001| + | X + 2002|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) /4x - 3/ + /5y+7,5/ >= 0
=> C>= 17,5
=> C min = 17,5 <=> 4x-3 = 0 và 5y + 7,5 =0 <=> x = 3/4 và y = -3/2
b) Áp dụng /A/ = /-A/
=> D = /x-2001/ + /2002-x/
Lại áp dụng /a/ + /b/ >= /a+b/
=> D>= /x-2001+2002-x/ = 1
=> D min = 1 <=> (x - 2001)(2002 - x) >= 0 <=> 2001 <= x <= 2002
\(M=\left|x-2002\right|+\left|x-2001\right|\)
\(\ge\left|x-2002-x+2001\right|=\left|1\right|=1\)
\(\Rightarrow Min_M=1\)
'=Bài 3:
\(Y=\left(x^{100}+1+1+1+1+1+1+1+1+1\right)-10x^{10}+1\)
Áp dụng BĐT Cauchy cho 10 số không âm ta có:
\(x^{100}+1+1+1+1+1+1+1+1+1\ge10\sqrt{x^{100}}=10x^{10}\)
\(Y\ge10x^{10}-10x^{10}+1=1\)
\(\Rightarrow maxY=1\)
Dấu "=" xảy ra\(\Leftrightarrow x^{100}=1\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Lời giải:
Dãy $x,x+1, x+2,..., 2002$ có số số hạng là:
$\frac{2002-x}{1}+1=2003-x$
Tổng $x+(x+1)+....+2001+2002=\frac{(2002+x)(2003-x)}{2}$
Do đó:
$\frac{(2002+x)(2003-x)}{2}=2002$
$\Rightarrow (2002+x)(2003-x)=4004$
$2002.2003+x-x^2=4004$
$x^2-x-4006002=0$
$(x-2002)(x+2001)=0$
$\Rightarrow x=2002$ hoặc $x=-2001$
a) Vì \(\left|3x+8,4\right|\ge0\left(\forall x\right)\Rightarrow A=\left|3x+8,4\right|-14,2\ge-14,2\)
Dấu "=" xảy ra <=> \(\left|3x+8,4\right|=0\Leftrightarrow3x+8,4=0\Leftrightarrow3x=-8,4\Leftrightarrow x=-2,8\)
Vậy Amin = -14,2 khi và chỉ khi x = 2,8
b) \(\left|x-2002\right|+\left|x-2001\right|=\left|x-2002\right|+\left|2001-x\right|\)
\(\ge\left|x-2002+2001-x\right|=\left|-1\right|=1\)
Dấu "=" xảy ra <=> \(\left(x-2002\right)\left(2001-x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-2002\ge0\\2001-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2002\\x\le2001\end{cases}}}\) (loại)
Hoặc \(\hept{\begin{cases}x-2002\le0\\2001-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2002\\x\ge2001\end{cases}}}\)
\(\Leftrightarrow2001\le x\le2002\)
Vậy GTNN của biểu thức bằng 1 khi và chỉ khi \(2001\le x\le2002\)