K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2022

ok

 

 

20 tháng 3 2017

Lấy H là trung điểm của BC, I là trung điểm của AB, G là trung điểm của EF
O là giao của EHIC

trong tam giác ABC có IE là đường trung bình nênIE//BC=> IECH là hình bình hành->
EO=OH,IO=OC

trong tam giác ACI có DE là đường trung bình-> DE//IC -> OC//EF
Do OC//EF và EO=OH EG=GF=> OC đi qua trung điểm của HF => C là TĐ HF

=> CF=1/2BC (đpcm)

11 tháng 9 2016

BẠN TỰ VẼ HÌNH NHÉ

Lấy K trung điểm AB. Nối K với E, K với C. Như vậy D trung điểm AK

Ta có do KEKE là đường trung bình tam giác ABCABC nên KE//BCKE//BC và KE=12BCKE=12BC.

Lại có DEDE là đường trung bình tam giác AKCAKC nên DE//KCDE//KC.

Xét tam giác KEC và tam giác FCEcó
+ chung CE
+ ˆKEC=ˆFCE^ (so le trong do KE//BC)
+ ˆADE=ˆACK(đồng vị) mà ˆADE=ˆCEFnên ˆCEF=ˆACK

Như vậy △KEC=△FCE (g.c.g) nên CF=EK
Mà EK=1/2BCnên CF=1/2B
Ta có đpcm

7 tháng 7 2018

Tự vẽ hình nhé Nữ hoàng sến súa là ta

Lấy K là trung điểm của AB. Nối K với E,K và C. Từ đó ta thấy D là trung điểm của AK

Do \(KEKE\)là đường trung bình tam giác \(ABCABC\)nên KE // BCKE // BC và KE=12BCKE=12BC

Lại có \(DEDE\)là đường trung bình tam giác \(AKCAKC\)nên DE // KCDE // KC

Ta thấy \(\Delta KEC\)và \(\Delta FCE\)có:

+ Chung CE

\(\widehat{KEC}=\widehat{FCE}\)( so le trong )

\(\widehat{ADE}=\widehat{ACK}\)( đồng vị ) ( mà \(\widehat{ADE}=\widehat{CEF}\Rightarrow\widehat{CEF}=\widehat{ACK}\))

\(\Rightarrow\Delta KEC=\Delta FCE\)( g.c.g ) \(\Rightarrow CF=EK\)

Mà \(EK=\frac{1}{2}BC\Rightarrow CF=\frac{1}{2}BC\)

Vậy \(CF=\frac{1}{2}BC\left(đpcm\right)\)


 

7 tháng 7 2018

Hình nè, nếu bạn không vẽ được:

Hình xấu thông cảm

1: Xét ΔABC có DE//BC

nên AE/AC=AD/AB

=>AE/8=1/3

=>AE=8/3(cm)

2:

Xét ΔABC có DE//BC

nên DE/BC=AD/AB

=>DE/10=1/3

=>DE=10/3(cm)

Xét tứ giác BDEF có

BD//EF

BF//DE

Do đó: BDEF là hình bình hành

=>BF=DE=10/3(cm)

3:

AD/AB=1/3

AE/AC=1/3

DE/BC=1/3

Do đó: AD/AB=AE/AC=DE/BC

19 tháng 7 2018

Áp dụng định lí Menelaus :

\(\frac{AE}{CE}\).\(\frac{AD}{BD}\).\(\frac{BF}{CF}\)= 1

Mà AE = CE, AD = 1/3BD

=> BF/CF = 3

=> CF = 1/2 BC