Chứng minh rằng:
x^2+5y^2+2x-4xy-10y+14>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=x^2+5y^2+2x-4xy-10y+14\)
\(A=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+y^2-6y+9+4\)
\(A=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)
\(A=\left(x-2y+1\right)^2+\left(y-3\right)^2+4\ge4>0\)
\(\Rightarrow A>0\left(đpcm\right)\)
\(a,x^2+5y^2+2x-4xy-10y+14\)
\(=x^2+2x-4xy+5y^2-10y+14\)
\(=x^2+2x\left(1-2y\right)+5y^2-10y+14\)
\(=x^2+2.x.\left(1-2y\right)+\left(1-2y\right)^2+5y^2-10y-\left(1-2y\right)^2+14\)
\(=\left(x+1-2y\right)^2+5y^2-10y-\left(1-4y+4y^2\right)+14\)
\(=\left(x+1-2y\right)^2+5y^2-10y-1+4y-4y^2+14\)
\(=\left(x+1-2y\right)^2+y^2-6y+13=\left(x+1-2y\right)^2+y^2-2.y.3+9+4\)
\(=\left(x+1-2y\right)^2+\left(y-3\right)^2+4\ge4>0\) với mọi x,y (đpcm)
b,tương tự
Nhóm các hạng tử để được bình phương nhé! (Dùng hằng đẳng thức số 1 và 2 đó!)
x^2+5y^2+2x-4xy-10y+14
=[x^2+2x(1-2y)+(1-2y)^2]+y^2-6y+13
=(x+1-2y)^2+(y^2-2y.3+9)+4
=(x+1-2y)^2+(y-3)^2+4.
Ta có (x+1-2y)^2 > hoặc=0 với mọi x,y thuộc R
và (y-3)^2 > hoặc=0 với mọi y thuộc R
=> (x+1-2y)^2+(y-3)^2+4 > hoặc =4 với mọi x,y thuộc R
=> (x+1-2y)^2+(y-3)^2+4 >0 với mọi x,y thuộc R.
Ta có:\(A=x^2+5y^2+2x-4xy-10y+14\)
\(=(x^2+4y^2+1-4xy-4y+2x)+\left(y^2-6y+9\right)+4\)
\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4\)
Do \(\left(x-2y+1\right)^2\ge0\left(\forall x;y\right)\)
\(\left(y-3\right)^2\ge0\left(\forall y\right)\)
\(\Rightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2\ge0\left(\forall x;y\right)\)
\(\Rightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2+4\ge4>0\left(\forall x;y\right)\)(1)
Mà đề bài lại cho \(A=0\) (2)
(1); (2) Suy ra không có giá trị của x;y thỏa mãn đề bài
Câu hỏi của KiKyo - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo nhé!