K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để \(A=4010-2011:\left(2012-x\right)\) có GTNN thì\(2011:\left(2012-x\right)\) có GTLN

\(2011:\left(2012-x\right)\) có GTLN khi \(2012-x\) có GTNN

Theo đề bài,ta có:

Vì \(x\) là STN

\(\Rightarrow\)\(2012-x=1\)

\(\Rightarrow x=2012-1\)

\(\Rightarrow x=2011\)

Vậy ...

19 tháng 3 2020

a, \(M=\left(x-2\right)^2-22\)

Có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2-22\ge-22\forall x\)

hay GTNN của M là -22 

Dấu "=" xảy ra tại  \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy GTNN của M là -22 tại x=2.

b, \(N=9-|x+3|\)

Có: \(|x+3|\ge0\forall x\)

\(\Rightarrow9-|x+3|\le9\forall x\)

hay GTLN của N là 9

Dấu "=" xảy ra tại \(|x+3|=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

Vậy GTLN của N là 9 tại x = -3.

6 tháng 1

A = 4010 - \(\dfrac{2011}{2012-x}\)

A nhỏ nhất khi \(\dfrac{2011}{2012-x}\) đạt giá trị lớn nhất

\(\dfrac{2011}{2012-x}\) đạt giá trị lớn nhất khi

    2012 - \(x\) = 1

               \(x\) = 2012 - 1

                \(x\)  = 2011

                                                   

6 tháng 1

\(A=4010-2011:\left(2012-x\right)\) có giá trị nhỏ nhất.

\(A\) nhỏ nhất lúc \(2011:\left(2012-x\right)\) có giá trị lớn nhất.

⇒ \(2012-x=1\\ x=2012-1\\ x=2011\)         Vậy \(x=2011\).

6 tháng 2 2017

bài này ta có thể giải theo 2 cách 

ta có A = \(\frac{x^2-2x+2011}{x^2}\)

\(\frac{x^2}{x^2}\)\(\frac{2x}{x^2}\)\(\frac{2011}{x^2}\)

= 1 - \(\frac{2}{x}\)\(\frac{2011}{x^2}\)

đặt \(\frac{1}{x}\)= y ta có 

A= 1- 2y + 2011y^2 

cách 1 : 

A = 2011y^2 - 2y + 1 

= 2011 ( y^2 - \(\frac{2}{2011}y\)\(\frac{1}{2011}\)

= 2011( y^2 - 2.y.\(\frac{1}{2011}\)\(\frac{1}{2011^2}\)\(\frac{1}{2011^2}\) + \(\frac{1}{2011}\)

= 2011 \(\left(\left(y-\frac{1}{2011}\right)^2\right)+\frac{2010}{2011^2}\)

= 2011\(\left(y-\frac{1}{2011}\right)^2\)\(\frac{2010}{2011}\)

vì ( y - \(\frac{1}{2011}\)2>=0 

=> 2011\(\left(y-\frac{1}{2011}\right)^2\)\(\frac{2010}{2011}\)> = \(\frac{2010}{2011}\)

hay A >=\(\frac{2010}{2011}\)

cách 2  

A = 2011y^2 - 2y + 1 

= ( \(\sqrt{2011y^2}\)) - 2 . \(\sqrt{2011y}\)\(\frac{1}{\sqrt{2011}}\)\(\frac{1}{2011}\)\(\frac{2010}{2011}\)

\(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)\(\frac{2010}{2011}\)

vì \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)> =0 

nên \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)\(\frac{2010}{2011}\)>= \(\frac{2010}{2011}\)

hay A >= \(\frac{2010}{2011}\)

12 tháng 2 2019

Bài 1:

a) Số nguyên dương nhỏ nhất là 1

Do đó, ta có : x + 2011 = 1

x = 1 – 2011 = -2010

b) Các số nguyên có giá trị tuyệt đối nhỏ hơn 100 là -99 ; -98 ; … ; 98 ; 99

Tổng cần tìm là: ( -99 + 99 ) + ( -98 + 98 ) + … + ( -1 + 1 ) + 0 = 0 + 0 + ... + 0 = 0

13 tháng 3 2015

Có ( x+2011)^2 lon hon hoac bang 0

=> (x+ 2011)^2 -2012 lon hon hoac bang -2012

=>GTNN là -2012 hay x= -2011

27 tháng 2 2020

ta có (x+2011)^2 \(\ge0\)

=> \(\left(x+2011\right)^2-2012\ge-2012\)

=> dấu "=" xảy ra khi zà chỉ khi 

\(\left(x+2011\right)^2-2012=0\)

=\(x=-2011\)

24 tháng 8 2016

=> /x-2011/\(\ge0\)

/x-2/\(\ge0\)

=> min A=0 khi x=2011 hoặc 2

tíc mình nha

3 tháng 12 2016
x 22011 
!x-2011!2011-x20090x-2011
!x-2!2-x02009x-2
A2011-x+2-x20092009x-2011+x-2
A2013-2x200920092x-2013
     

A(min)=2009 khi \(2\le x\le2011\)