K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 3 2021

\(\Leftrightarrow\sqrt{\left(x+\dfrac{1}{2}\right)^2+\left(\dfrac{\sqrt{3}}{2}\right)^2}-\sqrt{\left(x-\dfrac{1}{2}\right)^2+\left(\dfrac{\sqrt{3}}{2}\right)^2}=m\)

Trong mp tọa độ, gọi \(A\left(-\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\) ; \(B\left(\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\) và \(M\left(x;0\right)\) \(\Rightarrow AB=1\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(x+\dfrac{1}{2};-\dfrac{\sqrt{3}}{2}\right)\\\overrightarrow{BM}=\left(x-\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}AM=\sqrt{\left(x+\dfrac{1}{2}\right)^2+\left(\dfrac{\sqrt{3}}{2}\right)^2}\\BM=\sqrt{\left(x-\dfrac{1}{2}\right)^2+\left(\dfrac{\sqrt{3}}{2}\right)^2}\end{matrix}\right.\)

Theo BĐT tam giác: \(\left|AM-BM\right|< AB=1\)

\(\Rightarrow\left|m\right|< 1\Rightarrow-1< m< 1\)

b: \(\text{Δ}=\left(2m-2\right)^2-4\left(2m-5\right)\)

\(=4m^2-8m+4-8m+20\)

\(=4m^2-16m+24\)

\(=4\left(m^2-4m+6\right)>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)

Theo đề, ta có: \(\left(\sqrt{x_1}-\sqrt{x_2}\right)^2=4\)

\(\Leftrightarrow x_1+x_2-2\sqrt{x_1x_2}=4\)

\(\Leftrightarrow2m-2-2\sqrt{2m-5}=4\)

\(\Leftrightarrow2\sqrt{2m-5}=2m-6\)

\(\Leftrightarrow\sqrt{2m-5}=m-3\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>=3\\m^2-6m+9-2m+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=3\\m^2-8m+14=0\end{matrix}\right.\)

Đến đây thì dễ rồi, bạn chỉ cần giải pt bậc hai rồi đối chiếu với đk là xong

24 tháng 1 2022

câu a thì làm ntn ạ

NV
30 tháng 12 2020

ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{x+1}=t\ge0\Rightarrow x=t^2-1\)

Pt trở thành: \(2t=t^2-1+m\Leftrightarrow-t^2+2t+1=m\)

Xét hàm \(f\left(t\right)=-t^2+2t+1\) với \(t\ge0\)

\(-\dfrac{b}{2a}=1>0\) ; \(f\left(0\right)=1\) ; \(f\left(1\right)=2\)

\(\Rightarrow f\left(t\right)\le2\Rightarrow\) pt có nghiệm khi và chỉ khi \(m\le2\)

NV
30 tháng 1 2022

\(\Delta=9-4m>0\Rightarrow m< \dfrac{9}{4}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=m\end{matrix}\right.\)

\(\sqrt{x_1^2+1}+\sqrt{x_2^2+1}=3\sqrt{3}\)

\(\Leftrightarrow x_1^2+x_2^2+2+2\sqrt{\left(x_1^2+1\right)\left(x_2^2+1\right)}=27\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\sqrt{\left(x_1x_2\right)^2+\left(x_1+x_2\right)^2-2x_1x_2+1}=25\)

\(\Leftrightarrow9-2m+2\sqrt{m^2+9-2m+1}=25\)

\(\Leftrightarrow\sqrt{m^2-2m+10}=m+8\left(m\ge-8\right)\)

\(\Leftrightarrow m^2-2m+10=m^2+16m+64\)

\(\Rightarrow m=-3\) (thỏa mãn)

30 tháng 1 2022

Pt trên có a=1, b=5, c=-3m+2

\(\Delta=b^2-4ac=25-4\cdot1\cdot\left(-3m+2\right)=17+12m\)

Để pt có hai nghiệm phân biệt thì \(\Delta>0\)<=> 17+12m >0  <=>m> 17/12

Theo hệ thức Viet, ta có:

\(\hept{\begin{cases}x_1+x_2=-5\\x_1\cdot x_2=-3m+2\end{cases}}\)

\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1\cdot x_2=25-4\left(-3m+2\right)=17+12m=10\)

=> 12m = -7      <=>m=-7/12 (thỏa đkxđ)

Vậy với m=-7/12 thì phương trình có hai nghiệm x1, x2 thỏa (x1 - x2)^2 =10

10 tháng 5 2021

TH1 : \(x\ge m\)

\(PT\Leftrightarrow2x^2+2\left(m+1\right)x-m^2-1=x^2-2mx+m^2\)

\(\Leftrightarrow x^2+2\left(2m+1\right)x-2m^2-1=0\)

Có \(\Delta^,=b^{,2}-ac=4m^2+4m+1+2m^2+1=6m^2+4m+2\)

- Thấy \(\Delta^,\ge\dfrac{4}{3}>0\)

- Nên để PT có nghiệm thì \(x_1>x_2>m\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(m\right)>0\\-\left(2m+1\right)>m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2+2\left(2m+1\right)m-2m^2-1>0\\-\left(2m+1\right)-m>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3m^2+2m-1>0\\3m+1< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< -1\\m>\dfrac{1}{3}\end{matrix}\right.\\m< -\dfrac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow m< -1\)

TH2 : \(\left\{{}\begin{matrix}x< m\\2x^2+2\left(m+1\right)x-m^2-1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< m\\\Delta^,=3m^2+2m+3\le0\end{matrix}\right.\)

<=> Loại .

Vậy để .... <=> m < - 1 

 

 

11 tháng 5 2021

sai