K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2016

4x^3-12x^2-10x-14

28 tháng 10 2021

\(16x^2+24x+9+9x^2-24x+16+2-10x+10x-25x^2=0\)

\(27=0\left(voly\right)\)

Vậy S vô nghiệm.

a: \(\Rightarrow10x^2+9x-\left(10x^2+15x-2x-3\right)=8\)

\(\Leftrightarrow10x^2+9x-10x^2-13x+3=8\)

=>-4x=5

hay x=-5/4

b: \(\Leftrightarrow21x-15x^2-35+25x+15x^2-10x+6x-4-2=0\)

=>42x=41

hay x=41/42

26 tháng 5 2022

`a)(10x+9)x-(5x-1)(2x+3)=8`

`<=>10x^2+9x-10x^2-15x+2x+3=8`

`<=>-4x=5`

`<=>x=-5/4`     Vậy `S={-5/4}`

`b)(3x-5)(7-5x)+(5x+2)(3x-2)-2=0`

`<=>21x-15x^2-35+25x+15x^2-10x+6x-4-2=0`

`<=>42x=41`

`<=>x=41/42`       Vậy `S={41/42}`

11 tháng 2 2018

a, (3x+1)(7x+3)=(5x-7)(3x+1)

<=> (3x+1)(7x+3)-(5x-7)(3x+1)=0

<=> (3x+1)(7x+3-5x+7)=0

<=> (3x+1)(2x+10)=0

<=> 2(3x+1)(x+5)=0

=> 3x+1=0 hoặc x+5=0

=> x= -1/3 hoặc x=-5

Vậy...

27 tháng 5 2018

a) (3x - 2)(4x + 5) = 0

⇔ 3x - 2 = 0 hoặc 4x + 5 = 0

1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3

2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4

Vậy phương trình có tập nghiệm S = {2/3;−5/4}

b) (2,3x - 6,9)(0,1x + 2) = 0

⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0

1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3

2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.

Vậy phương trình có tập hợp nghiệm S = {3;-20}

c) (4x + 2)(x2 +  1) = 0 ⇔ 4x + 2 = 0 hoặc x2 +  1 = 0

1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2

2) x2 +  1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)

Vậy phương trình có tập hợp nghiệm S = {−1/2}

d) (2x + 7)(x - 5)(5x + 1) = 0

⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0

1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2

2) x - 5 = 0 ⇔ x = 5

3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5

Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}


 

26 tháng 9 2018

Làm giống như bạn Should A Person

13 tháng 9 2023

Bài 2: a) Để tính giá trị của A = 5x(x^2-3) + x^2(7-5x) - 7x tại x = -3, ta thay x = -3 vào biểu thức và tính toán: A = 5(-3)((-3)^2-3) + (-3)^2(7-5(-3)) - 7(-3) = 5(-3)(9-3) + 9(7+15) + 21 = -15(6) + 9(22) + 21 = -90 + 198 + 21 = 129

Vậy giá trị của A tại x = -3 là 129.

Bài 3: a) Để rút gọn và tính giá trị của biểu thức c = 5x^2-3x(x+2), ta thay x = -3 vào biểu thức và tính toán: c = 5(-3)^2 - 3(-3)(-3+2) = 5(9) - 3(9)(-1) = 45 - 27 = 18

Vậy giá trị của c tại x = -3 là 18.

b) Để rút gọn và tính giá trị của biểu thức b = 3x^2y(2x^2-y) - 4x^2(4x^2-y^2), ta thay x = -3 và y = -2 vào biểu thức và tính toán: b = 3(-3)^2(-2)(2(-3)^2-(-2)) - 4(-3)^2(4(-3)^2-(-2)^2) = 3(9)(-2)(2(9)-2) - 4(9)(4(9)-4) = -54(18-2) - 36(36-4) = -54(16) - 36(32) = -864 - 1152 = -2016

Vậy giá trị của b tại x = -3 và y = -2 là -2016.

c) Để rút gọn và tính giá trị của biểu thức c = xy^2(x-xy) - x(x=y) + yx(2x^2-2xy), ta thay x = -3 và y = -2 vào biểu thức và tính toán: c = (-3)(-2)^2((-3)-(-3)(-2)) - (-3)(x=(-3)) + (-2)(-3)(2(-3)^2-2(-3)(-2)) = (-3)(4)(-3+6) - (-3)(x=(-3)) + (-2)(-3)(18-12) = (-3)(4)(3) - (-3)(x=(-3)) + (-2)(-3)(6) = (-12)(3) + (-3)(-3) + (-2)(-3)(6) = -36 + 9 + 36 = 9

Vậy giá trị của c tại x = -3 và y = -2 là 9.

2:

a: \(A=5x^3-15x+7x^2-5x^3-7x=7x^2-22x\)

Khi x=-3 thì A=7(-3)^2+22*3

=63+66

=129

b: \(B=x^4-x^2y^2+x^2y^2+y^4=x^4+y^4\)

Khi x=-3 và y=-2 thì B=(-3)^4+(-2)^4

=81+16

=97

 

6 tháng 10 2016

Ta có: \(\left|x+\frac{1}{3}\right|+4=1\)

\(\Rightarrow\left|x+\frac{1}{3}\right|=1-4=-3\)

Vậy suy ra không có giá trị của x vì không có giá trị tuyệt đối nào là âm

6 tháng 10 2016

\(\left|x+\frac{1}{3}\right|+4=1\)

\(\left|x+\frac{1}{3}\right|=1-4\)

\(\left|x+\frac{1}{3}\right|=-3\)

\(\Rightarrow\) Không có giá trị x thỏa mãn

AH
Akai Haruma
Giáo viên
28 tháng 7 2018

Lời giải:

\(P(x)=x(x+2)(x+3)(x+5)-7\)

\(=[x(x+5)][(x+2)(x+3)]-7\)

\(=(x^2+5x)(x^2+5x+6)-7\)

\(=a(a+6)-7\) (đặt \(x^2+5x=a\) )

\(=a^2+6a-7=a^2-a+7a-7\)

\(=a(a-1)+7(a-1)=(a-1)(a+7)\)

\(=(x^2+5x-1)(x^2+5x+7)\)

-----------------

\(Q(x)=(4x-2)(10x+4)(5x+7)(2x+1)+17\)

\(=4(2x-1)(5x+2)(5x+7)(2x+1)+17\)

\(=4[(2x-1)(5x+7)][(5x+2)(2x+1)]+17\)

\(=4(10x^2+9x-7)(10x^2+9x+2)+17\)

\(=4a(a+9)+17\) (đặt \(10x^2+9x-7=a\)

\(=4a^2+36a+17=(2a+9)^2-8^2\)

\(=(2a+9-8)(2a+9+8)=(2a+1)(2a+17)\)

\(=(20x^2+18x-13)(20x^2+18x+3)\)

AH
Akai Haruma
Giáo viên
28 tháng 7 2018

\(R(x)=(3x+2)(3x-5)(x-1)(9x+10)+24x^2\)

\(=[(3x+2)(3x-5)][(x-1)(9x+10)]+24x^2\)

\(=(9x^2-9x-10)(9x^2+x-10)+24x^2\)

\(=(a-9x)(a+x)+24x^2\) (đặt \(9x^2-10=a\) )

\(=a^2-8ax+15x^2=(a^2-5ax)-(3ax-15x^2)\)

\(=a(a-5x)-3x(a-5x)=(a-3x)(a-5x)\)

\(=(9x^2-3x-10)(9x^2-5x-10)\)

--------------------------

\(H(x)=(x-18)(x-7)(x+35)(x+90)-67x^2\)

\(=[(x-18)(x+35)][(x-7)(x+90)]-67x^2\)

\(=(x^2+17x-630)(x^2+83x-630)-67x^2\)

\(=a(a+66x)-67x^2\) (đặt \(x^2+17x-630=a\) )

\(=a^2-ax+67ax-67x^2\)

\(=a(a-x)+67x(a-x)=(a-x)(a+67x)\)

\(=(x^2+16x-630)(x^2+84x-630)\)

NV
15 tháng 10 2019

\(A=3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\)

\(B=2\left(x-\frac{3}{4}\right)^2+\frac{23}{8}\)

\(C=\left(x+\frac{3}{2}\right)^2+\frac{11}{4}\)

\(D=\left(x-5\right)^2+\left(3y+1\right)^2+4\)

\(E=\left(4x+1\right)^2+\left(y-2\right)^2+1\)

\(M=-\left(x+\frac{7}{2}\right)^2-\frac{11}{4}\)

\(N=-5\left(x-\frac{3}{5}\right)^2-\frac{41}{5}\)

\(C\) đề sai ví dụ \(x=3\Rightarrow C=2>0\)

\(D=-5\left(x-\frac{7}{10}\right)^2-\frac{131}{20}\)