K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2016

a)\(x^2+6x+5=0\)

=>\(x^2+x+5x+5=0\)

=>\(x\left(x+1\right)+5\left(x+1\right)=0\)

=>\(\left(x+1\right)\left(x+5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=-5\end{cases}}}\)

Vậy x=-1 hoặc x=-5

b)\(2x^2+6x+4=0\)

=>\(2x^2+2x+4x+4=0\)

=>\(2x\left(x+1\right)+4\left(x+1\right)=0\)

=>\(\left(x+1\right)\left(2x+4\right)=0\)

=>\(\left(x+1\right)2\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}}\)

Vậy x=-1 hoặc x=-2

15 tháng 7 2016

(x^2+6x+9)-4=0

(x+3)^2=4

x+3=2

x=-1

7 tháng 8 2021

undefined

undefined

4 tháng 9 2021

a) \(\left(3x+5\right)\left(7-2x\right)+6x\left(x+4\right)=0\)

\(\Leftrightarrow21x-6x^2+35-10x+6x^2+24x=0\)

\(\Leftrightarrow35x=-35\Leftrightarrow x=-1\)

b) \(x^3-25x=0\)

\(\Leftrightarrow x\left(x^2-25\right)=0\)

\(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)

a: Ta có: \(\left(3x+5\right)\left(7-2x\right)+6x\left(x+4\right)=0\)

\(\Leftrightarrow21x-6x^2+35-10x+6x^2+24x=0\)

\(\Leftrightarrow x=1\)

b: Ta có: \(x^3-25x=0\)

\(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)

a) Ta có: \(36x^3-4x=0\)

\(\Leftrightarrow4x\left(9x^2-1\right)=0\)

\(\Leftrightarrow x\left(3x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=\dfrac{-1}{3}\end{matrix}\right.\)

b) Ta có: \(3x\left(x-2\right)+x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{3}\end{matrix}\right.\)

a) Để (m-4)x+2-m=0 là phương trình bậc nhất ẩn x thì \(m-4\ne0\)

hay \(m\ne4\)

b) Để \(\left(m^2-4\right)x-m=0\) là phương trình bậc nhất ẩn x thì \(m^2-4\ne0\)

\(\Leftrightarrow m^2\ne4\)

hay \(m\notin\left\{2;-2\right\}\)

c) Để \(\left(m-1\right)x^2-6x+8=0\) là phương trình bậc nhất ẩn x thì \(m-1=0\)

hay m=1

d) Để \(\dfrac{m-2}{m-1}x+5=0\) là phương trình bậc nhất ẩn x thì \(\dfrac{m-2}{m-1}\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-2\ne0\\m-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m\ne1\end{matrix}\right.\)

a: Ta có: \(2x^3-18x=0\)

\(\Leftrightarrow2x\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)

b: Ta có: \(\left(3x-2\right)\left(2x+1\right)-6x\left(x+2\right)=11\)

\(\Leftrightarrow6x^2+3x-4x-2-6x^2-12x=11\)

\(\Leftrightarrow-13x=13\)

hay x=-1

c: Ta có: \(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)=3\left(1-x^2\right)\)

\(\Leftrightarrow x^3-3x^2+3x-1-x^3-8=3-3x^2\)

\(\Leftrightarrow3x=12\)

hay x=4

4 tháng 9 2021

a) 2x3-18x=0

⇔ 2x(x2-9)=0

⇔ 2x(x-3)(x+3)=0

⇔ \(\left\{{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)

b)(3x-1)(2x+1)-6x(x+2)=11

 

⇔ 6x2+x-1-6x2-12x=11

⇔ -11x=12

\(\Leftrightarrow x=-\dfrac{12}{11}\)

c) (x-1)3-(x+2).(x2-2x+4)=3.(1-x2)

⇔ x3-3x2+3x-1-x3-8-3+3x2=0

⇔ 3x=12

⇔   x=4

15 tháng 9 2023

\(a.x^2-4x+4=0\)

\(\left(x-2\right)^2=0\)

=>x=2

b) \(2x^2-x=0\)

\(x\left(2x-1\right)=0\)

=> \(\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)

c) \(x^2-5x+6=0\)

\(x^2-2x-3x+6=0\)

\(\left(x-2\right)\left(x-3\right)=0\)

=> \(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

d) \(x^2+y^2=0\)

Vì \(x^2,y^2\ge0\forall x,y\)

=>x=y=0

e) \(x^2+6x+10=0\)

\(\left(x+3\right)^2+1=0\)

Vì \(\left(x+3\right)^2\ge0\forall x\)

=> VT>0 \(\forall x\)

=> phương trình vô nghiệm

13 tháng 11 2021

\(a,\Leftrightarrow3x\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

16 tháng 10 2021

a: Ta có: \(x^3+1=0\)

\(\Leftrightarrow x^3=-1\)

hay x=-1

b: Ta có: \(6x^2-12x-48=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)

7 tháng 11 2021

\(x\left(5-6x\right)+\left(2x-1\right)\left(3x+\text{4}\right)=6\\ \Leftrightarrow5x-6x^2+6x^2+8x-3x-4=6\)

\(\Leftrightarrow10x-4=6\)

\(\Leftrightarrow10x=6+4\\ \Leftrightarrow10x=10\\ \Leftrightarrow x=\dfrac{10}{10}\)

\(\Leftrightarrow x=1\)

\(x^2\left(x-2021\right)-x+2021=0\)

\(\Leftrightarrow x^2\left(x-2021\right)-(x-2021)=0\)

\(\Leftrightarrow\left(x-2021\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x-2021\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2021=0\\x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2021\\x=1\\x=-1\end{matrix}\right.\)

 

29 tháng 10 2023

a:

ĐKXĐ: \(x^2+3x>=0\)

=>x(x+3)>=0

=>\(\left[{}\begin{matrix}x>=0\\x< =-3\end{matrix}\right.\)

 \(\sqrt{16}-\sqrt{x^2+3x}=0\)

=>\(\sqrt{x^2+3x}=\sqrt{16}\)

=>x^2+3x=16

=>x^2+3x-16=0

\(\text{Δ}=3^2-4\cdot1\cdot\left(-16\right)=9+64=73>0\)

Do đó: Phương trình có 2 nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-3-\sqrt{73}}{2}\\x_2=\dfrac{-3+\sqrt{73}}{2}\end{matrix}\right.\)

b:

ĐKXĐ: \(x\in R\)

 \(3x-1-\sqrt{4x^2-12x+9}=0\)

=>\(\sqrt{\left(2x-3\right)^2}=3x-1\)

=>\(\left\{{}\begin{matrix}3x-1>=0\\\left(3x-1\right)^2=\left(2x-3\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=\dfrac{1}{3}\\\left(3x-1-2x+3\right)\left(3x-1+2x-3\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=\dfrac{1}{3}\\\left(x+2\right)\left(5x-4\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\left(loại\right)\\x=\dfrac{4}{5}\left(nhận\right)\end{matrix}\right.\)

c:

ĐKXĐ: \(\left\{{}\begin{matrix}x^2-6x+8>=0\\2x^2-10x+11>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\x< =2\end{matrix}\right.\\\left[{}\begin{matrix}x< =\dfrac{5-\sqrt{3}}{2}\\x>=\dfrac{5+\sqrt{3}}{2}\end{matrix}\right.\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x< =\dfrac{5-\sqrt{3}}{2}\\x>=4\end{matrix}\right.\)

 \(\sqrt{2x^2-10x+11}=\sqrt{x^2-6x+8}\)

\(\Leftrightarrow2x^2-10x+11=x^2-6x+8\)

=>\(x^2-4x+3=0\)

=>(x-1)(x-3)=0

=>x=3(loại) hoặc x=1(nhận)