K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM vuông tại M  và ΔACM vuông tại M có

AB=AC

AM chung

Do đó: ΔABM=ΔACM

b: Xét ΔABC có 

M là trung điểm của BC

MK//AB

Do đó: K là trung điểm của AC

Ta có: ΔAMC vuông tại M

mà MK là đường trung tuyến

nên KA=KM

a: Xét ΔABM vuông tại M và ΔACM vuông tại M có

AB=AC

AM chung

=>ΔABM=ΔACM

b: Xét ΔAIM vuông tạiI và ΔAKM vuông tại K có

AM chung

góc IAM=góc KAM

=>ΔAIM=ΔAKM

=>AI=AI và MI=MK

c:AI=AK

MI=MK

=>AM là trung trực của IK=>AM vuông góc IK

5 tháng 3 2023

ê

17 tháng 3 2021

Bạn tự vẽ hình nhé 

CM : 

a, Xét tam giác ABM và tam giác ACM , ta có :

                       góc AMB = góc AMC ( =90 o )

                      AB = AC (Vì tam giác ABC cân tại A)

                      AM : Cạnh chung 

=>  Tam giac ABM = tam giác ACM ( cạnh huyền - cạnh góc vuông )

còn cách thứ 2 nữa ( theo trường hợp cạnh huyền góc nhọn ) nhưng mình chỉ làm 1 cách thôi 

b, Vì tam giác ABM = tam giác ACM ( chứng minh câu a ) 

=> góc EAM  = góc FAM ( 2 góc tương ứng )

=> góc EAM = góc FAM ( 2 gó tương ứng )

Xét tam giác EAM và tam giác FAM , ta có :

      gÓC EAM = góc FAM  ( 90 o ) 

     AM : cạnh chung 

    góc EAM = góc FAM ( cmt )

    AM : cạnh chung 

=> tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn ) 

=> ME = MF ( 2 cạnh tương ứng ) 

c, Vì tam giác AEM = tam giác AFM ( chứng minh câu b)

=> AE = AF ( 2 cạnh tương ứng )

Vậy tam giác AEF cân tại A 

17 tháng 3 2021

Bạn tự vẽ hình nhé 

CM : 

a, Xét tam giác ABM và tam giác ACM , ta có :

                       góc AMB = góc AMC ( =90 o )

                      AB = AC (Vì tam giác ABC cân tại A)

                      AM : Cạnh chung 

=>  Tam giac ABM = tam giác ACM ( cạnh huyền - cạnh góc vuông )

còn cách thứ 2 nữa ( theo trường hợp cạnh huyền góc nhọn ) nhưng mình chỉ làm 1 cách thôi 

b, Vì tam giác ABM = tam giác ACM ( chứng minh câu a ) 

=> góc BAM  = góc CAM  ( 2 góc tương ứng )

=> góc EAM = góc FAM ( 2 gó tương ứng )

Xét tam giác EAM và tam giác FAM , ta có :

      gÓC EAM = góc FAM  ( 90 o ) 

     AM : cạnh chung 

    góc EAM = góc FAM ( cmt )

    AM : cạnh chung 

=> tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn ) 

=> ME = MF ( 2 cạnh tương ứng ) 

c, Vì tam giác AEM = tam giác AFM ( chứng minh câu b)

=> AE = AF ( 2 cạnh tương ứng )

Vậy tam giác AEF cân tại A 

a: BC=căn 6^2+8^2=10cm

b: Xét ΔABM vuông tại A và ΔKBM vuông tại K có

BM chung

góc ABM=góc KBM

=>ΔBAM=ΔBKM

c: AM=MK

MK<MC

=>AM<MC

d: Xét ΔMAD vuông tại A và ΔMKC vuông tại K có

MA=MK

góc AMD=góc KMC

=>ΔMAD=ΔMKC

=>AD=KC

Xét ΔBDC có BA/AD=BK/KC

nên AK//DC

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

=>ΔAMB=ΔAMC
b: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

góc HAM=góc KAM

=>ΔAHM=ΔAKM

=>AH=AK

Xét ΔACB co AH/AB=AK/AC
nên HK//BC

a) Xét ΔABM và ΔACM có 

AB=AC(ΔABC cân tại A)

AM chung

BM=CM(M là trung điểm của BC)

Do đó: ΔABM=ΔACM(c-c-c)

) Ta có: 

 

- AM là đường phân giác góc ABC nên ∠MAB = ∠MAC.

 

- MH vuông góc với BC nên ∠HMB = 90°.

 

- ∠BMA = ∠B + ∠MAB = ∠B + ∠MAC.

 

 

 

Vì ∠BMA = ∠HMB và ∠HBM = ∠BMA, nên tam giác ABM = tam giác HBM theo gốc.

 

 

 

b) Ta có:

 

- AM là đường phân giác của góc ABC nên ∠BAM = ∠MAC.

 

- MH vuông góc với BC nên ∠HMB = 90°.

 

- Ta có ∠HMA = ∠HMB + ∠BAM = 90° + ∠MAC.

 

 

 

Vì ∠HMA = 90° + ∠MAC và ∠AHM = 180° - ∠HMA, nên 180° - ∠AHM = 90° + ∠MAC. Do đó, ∠AHM = ∠MAC.

 

 

Vậy AK // HM.

 

 

 

c) Ta có:

 

- AK // HM (theo b).

 

- AM là đường phân giác của góc ABC nên ∠BAM = ∠MAC.

 

- HN là đường cao của tam giác ABM, nên ∠BNH = 90°.

 

- Ta có ∠ANH = ∠ANM + ∠MNH = ∠BAM + ∠BNH = ∠BAM + 90°.

 

 

 

Vì ∠ANH = ∠BAM + 90° và ∠HAN = 180° - ∠ANH, nên 180° - ∠HAN = ∠BAM + 90°. Do đó, ∠HAN = ∠BAM.

 

 

 

Vậy HN // AM.

10 tháng 5 2022

mình chỉ giúp ý d theo mong muốn của bạn thôi :)

Có : AH = AK ( cái này bạn chứng minh ở câu  trên chưa mình không biết; nếu chưa thì bạn chứng minh đi nhé )

=> A thuộc đường trung trực của HK

và MH=MK

=> M thuộc đường trung trực của HK

=> AM là đường trung tực của HK

=> AM ⊥ HK