K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2021

\(A=\dfrac{2\sqrt{x}+17}{\sqrt{x+5}}=\dfrac{2\sqrt{x}+10}{\sqrt{x}+5}+\dfrac{7}{\sqrt{x}+5}=2+\dfrac{7}{\sqrt{x}+5}\) 

Để \(A\) ∈ \(Z\) thì \(\dfrac{7}{\sqrt{x}+5}\) phải ∈ \(Z\)

=> \(\sqrt{x}+5\) ∈ \(Ư\left(7\right)=\left\{-7;-1;1;7\right\}\)

# Với \(\sqrt{x}+5=-7=>\sqrt{x}=-12\)(Loại)

#Với \(\sqrt{x}+5=-1=>\sqrt{x}=-6\)(Loại)

#Với \(\sqrt{x}+5=1=>\sqrt{x}=-4\left(Loại\right)\)

#Với \(\sqrt{x}+5=7=>\sqrt{x}=2< =>x=4\left(Nhận\right)\)

Vậy \(x=4\) thì \(A\)\(Z\)

28 tháng 9 2021

\(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}+\sqrt[3]{\dfrac{b^4}{c^2\left(b^2-bc+c^2\right)}}\sqrt[3]{\dfrac{c^4}{a^2\left(c^2-ac+b^2\right)}}\) \(\text{≥}3\)

\(Ta\) \(Có\) : \(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}=\sqrt[3]{\dfrac{a^6}{ab.ab\left(a^2-ab+b^2\right)}}=\dfrac{a^2}{\sqrt[3]{ab.ab.\left(a^2-ab+b^2\right)}}\) 

\(Áp\) \(dụng\) \(bđt\) \(AM-GM\) 

\(\sqrt[3]{ab.ab\left(a^2-ab+b^2\right)}\text{≤}\)  \(\dfrac{ab+ab+a^2-ab+b^2}{3}\) 

\(=>\dfrac{a^2}{\sqrt[3]{ab.ab\left(a^2-ab+b^2\right)}}\) \(\text{≥}\) \(\dfrac{3a^2}{a^2+ab+b^2}\) \(Hay\) \(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}\text{≥}\dfrac{3a^2}{a^2+ab+b^2}\)

Tương tự ta cũng có : 

\(\sqrt[3]{\dfrac{b^4}{c^2\left(b^2-bc+c^2\right)}}\text{≥}\dfrac{3b^2}{b^2+bc+c^2}\) 

\(\sqrt[3]{\dfrac{c^4}{a^2\left(c^2-ac+a^2\right)}}\text{≥}\dfrac{3c^2}{a^2+ac+c^2}\)

\(=>\text{​​}\text{​​}\)\(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}+\sqrt[3]{\dfrac{b^4}{c^2\left(b^2-bc+c^2\right)}}\sqrt[3]{\dfrac{c^4}{a^2\left(c^2-ac+b^2\right)}}\)  \(\text{≥}\) \(3\left(\dfrac{a^2}{a^2+ab+b^2}+\dfrac{b^2}{b^2+bc+c^2}+\dfrac{c^2}{a^2+ac+c^2}\right)\) 

Cần c/m \(\left(\dfrac{a^2}{a^2+ab+b^2}+\dfrac{b^2}{b^2+bc+c^2}+\dfrac{c^2}{a^2+ac+c^2}\right)\) ≥ \(1\) 

Ta có : \(\dfrac{a^2}{a^2+ab+b^2}\text{≥}\dfrac{1}{3}\) 

\(< =>3a^2\text{≥}a^2+ab+b^2\) \(< =>2a^2-b\left(a+b\right)\text{≥}0\) (1)

Lại có : \(a^2\text{≥}-b\left(a+b\right)\) (2)

Từ (1) và (2) => \(\dfrac{a^2}{a^2+ab+b^2}\text{≥}\dfrac{1}{3}\)

Tương tự ta cũng có :

 \(\dfrac{b^2}{b^2+bc+c^2}\text{≥}\dfrac{1}{3}\) 

\(\dfrac{c^2}{a^2+ac+c^2}\text{≥}\dfrac{1}{3}\)

Do đó \(\dfrac{a^2}{a^2+ab+b^2}+\dfrac{b^2}{b^2+bc+c^2}+\dfrac{c^2}{a^2+ac+c^2}\text{≥}1\)

Suy ra :  \(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}+\sqrt[3]{\dfrac{b^4}{c^2\left(b^2-bc+c^2\right)}}\sqrt[3]{\dfrac{c^4}{a^2\left(c^2-ac+b^2\right)}}\) \(\text{≥}\) \(3\) 

Đẳng thức xảy ra <=> \(a=b=c=1\)

 

 

 

25 tháng 9 2021

\(A=\left(4x-1\right)\left(3x+1\right)-5x\left(x-3\right)-\left(x-4\right)\left(x-3\right)\)

\(=\left(4x-1\right)\left(3x+1\right)-\left(5x+x-4\right)\left(x-3\right)\)

\(=12x^2+4x-3x-1-6x^2+4x+18x-12\)

\(=18x^2+19x-13\)

10 tháng 6 2021

1.2 với \(x\ge0,x\in Z\)

A=\(\dfrac{2\sqrt{x}+7}{\sqrt{x}+2}=2+\dfrac{3}{\sqrt{x}+2}\in Z< =>\sqrt{x}+2\inƯ\left(3\right)=\left(\pm1;\pm3\right)\)

*\(\sqrt{x}+2=1=>\sqrt{x}=-1\)(vô lí)

*\(\sqrt{x}+2=-1=>\sqrt{x}=-3\)(vô lí
*\(\sqrt{x}+2=3=>x=1\)(TM)

*\(\sqrt{x}+2=-3=\sqrt{x}=-5\)(vô lí)

vậy x=1 thì A\(\in Z\)

 

20 tháng 4 2023

\(x+\dfrac{1}{5}-\dfrac{3}{7}=\dfrac{6}{35}\)
\(x+\dfrac{1}{5}=\dfrac{6}{35}+\dfrac{3}{7}\)
\(x+\dfrac{1}{5}=\dfrac{6}{35}+\dfrac{15}{35}\)
\(x+\dfrac{1}{5}=\dfrac{21}{35}\)
\(x=\dfrac{21}{35}-\dfrac{1}{5}\)
\(x=\dfrac{21}{35}-\dfrac{7}{35}\)
\(x=\dfrac{14}{35}=\dfrac{2}{5}\)

20 tháng 4 2023

\(x\) + \(\dfrac{1}{5}\) - \(\dfrac{3}{7}\) = \(\dfrac{6}{35}\) 

\(x\) + \(\dfrac{1}{5}\) = \(\dfrac{6}{35}\) + \(\dfrac{3}{7}\)

\(x\) + \(\dfrac{1}{5}\) = \(\dfrac{3}{5}\)

\(x\)       = \(\dfrac{3}{5}\) - \(\dfrac{1}{5}\)

\(x\) =\(\dfrac{2}{5}\)

21 tháng 10 2021

a)2x2-7x-2x2-2x=7

-9x=7

x=-7/9

b)3x2+24x-x2-2x2-2x=2

22x=2

x=1/11

 

21 tháng 10 2021

c: \(3x\left(x-7\right)-2\left(x-7\right)=0\)

\(\Leftrightarrow\left(x-7\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=\dfrac{2}{3}\end{matrix}\right.\)

d: \(7x^2-28=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

15:

a: \(\text{Δ}=\left(m^2-m+2\right)^2-4m^2\)

=(m^2-m+2-2m)(m^2-m+2+2m)

=(m^2+m+2)(m^2-3m+2)

=(m-1)(m-2)(m^2+m+2)

Để phương trình co hai nghiệm phân biệt thì (m-1)(m-2)(m^2+m+2)>0

=>(m-1)(m-2)>0

=>m>2 hoặc m<1

b: x1+x2=m^2-m+2>0 với mọi m

x1*x2=m^2>0 vơi mọi m

=>Phương trình luôn có hai nghiệm dương phân biệt

16 tháng 10 2023

1 poverty

2 decision

3 worried

4 awake

5 singers

7 northen

8 disappeared

9 difference

10 unimportant

11 windy

12 portable

13 sensibly

14 painting

15 mainly

16 tháng 10 2023

SOS😥👉🏳👈