Cho góc AOB = 135 độ
Gọi góc BOC và AOD là 2 góc kề bù với góc AOB
a, 2 góc BOC va AOD có đối đỉnh không ? vì sao?
b, chung to rang 2 tia phan giac cua goc BOC va AOD la 2 tia doi nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pạn tự vẽ hình nha!!!
Bài Làm
a, Ta có: \(\widehat{BOC}\) kề bù \(\widehat{AOB}\) (gt)
\(\Rightarrow\) OC và OA là hai tia đối nhau (1)
Lại có: \(\widehat{AOD}\) kề bù \(\widehat{AOB}\) (gt)
\(\Rightarrow\) OB và OD là hai tia đối nhau (2)
Từ (1) và (2) \(\Rightarrow\widehat{BOC}\) và \(\widehat{AOD}\) là hai góc đối đỉnh (đpcm)
b, Gọi Om, On lần lượt là hai tia phân giác của \(\widehat{BOC}\) và \(\widehat{AOD}\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{BOm}=\widehat{mOC}=\widehat{\frac{BOC}{2}}\\\widehat{AOn}=\widehat{nOD}=\frac{\widehat{AOD}}{2}\end{matrix}\right.\)
Mà \(\widehat{BOC}=\widehat{AOD}\) ( hai góc đối đỉnh )
\(\Rightarrow\widehat{BOm}=\widehat{mOC}=\widehat{AOn}=\widehat{nOD}\)
Ta có: \(\widehat{AOB}+\widehat{AOD}=180^0\) ( hai góc kề bù )
\(\Rightarrow\widehat{AOB}+\widehat{AOn}+\widehat{nOD}=180^0\)
\(\Rightarrow\widehat{AOB}+\widehat{AOn}+\widehat{BOm}=180^0\)
\(\Rightarrow\widehat{mOn}=180^0\)
\(\Rightarrow\) Om và On là hai tia đối nhau (đpcm)
Chúc pạn hok tốt!!!
Do góc BOC kề bù với góc AOB
=> Tia OA và tia OC đối nhau
Do góc AOD và góc AOB kề bù
=> tia OD và tia OB đối nhau
=> góc BOC và góc AOD là 2 góc đối đỉnh
Gọi OM, ON là 2 tia phân giác góc AOD và góc BOC
=> góc AOM = 1/2 góc AOD = 1/2 (180* - 135*) = 45*/2
mà góc AON = góc AOB + góc BON
=> góc AON = 135* + 45*/2
=> góc AOM + góc AON = 135* + 45*/2 + 45*/2 = 180*
=> góc MON = 180*
=> OM , ON là 2 tia đối nhau
Ta có hình vẽ:
a) Do BOC kề bù với AOB
=> BOC + AOB = 180o
Mà BOC + AOB = AOC => AOC = 180o
=> OA và OC đối nhau (1)
DO AOD kề bù với AOB
=> AOD + AOB = 180o
Mà AOD + AOB = BOD => BOD = 180o
=> OB và OD đối nhau (2)
Từ (1) và (2), ta đã biết 2 góc đối đỉnh là 2 góc mà mỗi cạnh của góc này là tia đối của 1 cạnh góc kia => AOD và BOC là 2 góc đối đỉnh (đpcm)
b) Ta có: AOD + AOB = 180o (kề bù)
=> AOD + 135o = 180o
=> AOD = 180o - 135o
=> AOD = 45o = BOC (đối đỉnh)
Vì Om là tia phân giác của AOD; On là tia phân giác của BOC
=> \(DOm=AOm=BOn=COn=\frac{AOD}{2}=\frac{45^o}{2}\)
=> AOm + BOn = 45o
Lại có: AOm + AOB + BOn = mOn
=> 45o + 135o = mOn
=> mOn = 180o
=> Om và On là 2 tia đối nhau (đpcm)
a) Ta có: BOC^ và AOB^ kề bù => OA và OC đối nhau.
AOD^ và AOB^ kề bù => OD và OB đối nhau
=> BOC^ và AOD^ đối đỉnh
b) Vì BOC^ đối đỉnh với AOD^ (cmt) nên tia phân giác của 2 góc BOC^ và AOD^ đối nhau.
(Câu b tớ chỉ bt làm vậy thôi)