K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔOHM vuông tại H và ΔOKM vuông tại K có

OM chung

\(\widehat{HOM}=\widehat{KOM}\)

Do đó: ΔOHM=ΔOKM

b: ta có: ΔOHM=ΔOKM

nên MH=MK

hay ΔMHK cân tại M

c: \(\widehat{KMH}=360^0-90^0-90^0-120^0=60^0\)

nênΔMHK đều

a: Xét ΔOAC vuông tại A và ΔOBC vuông tại B có

OC chung

\(\widehat{AOC}=\widehat{BOC}\)

Do đó;ΔOAC=ΔOBC

Suy ra: OA=OB và CA=CB

hay ΔOAB cân tại O

b: Ta có: ΔOAB cân tại O

mà OC là đường phân giác

nên CO là đường cao

c: Xét ΔCAD vuông tại A và ΔCBE vuông tại B có 

CA=CB

\(\widehat{ACD}=\widehat{BCE}\)

Do đó: ΔCAD=ΔCBE

Suy ra: CD=CE

d: OA=12cm

OC=13cm

=>AC=5cm

17 tháng 2 2016

a) xét tam giác OBI vuông tại B và tam giác OAI vuông tại A có:

^AOI = ^BOI ( do ƠI là tia phân giác của goc xoy)

   OI là cạnh chung

=> tg OBI = tg OAI ( cạnh huyền - góc nhọn)

   xin lỗi nka, câu b và câu c mình ko biết làm

17 tháng 2 2016

Mk giải câu a) nhé, do câu b) là vẽ hình, còn câu c) bn chờ mk suy nghĩ, hơi khó

Gọi Ot là tia p/g của g.xOy

Xét tg vuông OBI và tg vuông OAI có:

OI cạnh chung

g.BOI = g.AOI ( Ot là tia p/g của g.xOy)

=> tg OBI = tg OAI (cạnh huyền - góc nhọn)

a: Xét ΔOAI vuông tại A và ΔOBI vuông tại B có

OI chung

góc AOI=góc BOI

=>ΔOAI=ΔOBI

=>OA=OB và IA=IB

b: OA=căn 10^2-6^2=8cm

c: Xét ΔIBM vuông tại B và ΔIAK vuông tại A có

IB=IA

góc AIK=góc BIM

=>ΔIBM=ΔIAK

d: OA+AK=OK

OB+BM=OM

mà OA=OB và AK=BM

nên OK=OM

mà IM=IK

nên OI là trung trực của MK

=>O,I,C thẳng hàng

18 tháng 3 2021

+)Xét △OAH(∠OAH=90o) và △OBH(∠OBH=90o) có:

OH là cạnh chung 

∠AOH=∠BOH(OH là tia phân giác của ∠xOy)

=>△OAH=△OBH(ch.gn)

b)△OBH là tam giác vuông (∠OBH=90o)

Chúc bạn học tốt

a: Xét ΔOAC vuông tại A và ΔOBC vuông tại B có 

OC chung

\(\widehat{AOC}=\widehat{BOC}\)

Do đó: ΔOAC=ΔOBC

Suy ra: OA=OB và CA=CB

=>ΔOAB cân tại O

b: Ta có: OA=OB

CA=CB

DO đó: OC là đường trung trực của AB

hay OC\(\perp\)AB

c: Xét ΔCAD vuông tại A và ΔCBE vuông tại B có

CA=CB

\(\widehat{ACD}=\widehat{BCE}\)

Do đó: ΔCAD=ΔCBE

SUy ra: CD=CE

28 tháng 1 2022

a. Xét △OAM và △OBM có:

\(\hat{OAM}=\hat{OBM}=90^o\)

\(OM\)  chung

\(\hat{AOM}=\hat{BOM}\) (do M thuộc tia phân giác của \(\hat{xOy}\))

\(\Rightarrow\Delta OAM=\Delta OBM\left(c.h-g.n\right)\)

\(\Rightarrow MA=MB\) (đpcm).

 

b. Từ a. \(\Rightarrow OA=OB\)

⇒ Tam giác OAB cân tại O.

 

c. Xét △BME và △AMD có:

\(\hat{MBE}=\hat{MAD}=90^o\)

\(MA=MB\left(cmt\right)\)

\(\hat{AMD}=\hat{BME}\) (đối đỉnh)

\(\Rightarrow\Delta BME=\Delta AMD\left(g.n-c.g.v\right)\)

\(\Rightarrow MD=ME\left(đpcm\right)\)

 

d. Ta có: \(OA=OB\left(cmt\right)\)\(AD=DE\) (suy ra từ c.

\(\Rightarrow OA+AD=OB+DE\)

\(\Rightarrow OD=OE\)

⇒ Tam giác ODE cân tại O.

Tam giác ODE cân tại O có OM là đường phân giác ⇒ OM cũng là đường cao.

\(\Rightarrow OM\perp DE\left(đpcm\right)\)

15 tháng 1 2017

a) Xét Tàm giác vuông OBK và Tam giác vuông OAH có :

OA = OB (GT)

<O chung 

=> Tam giác vuông OBK = Tam giác vuông OAH   ( cạnh góc vuông - góc nhọn kề )

=> OH = OK  (2CTU)

Xét Tam giác OHK có :

OH = OK 

=> Tam giác OHK cân tại O     (dpcm)

b) Vì Tam giác OBK và Tam giác OAH  (cmt)

=> <OKB = <OHA (2GTU)

TC : OH = OK (cmt)

 OA = OB (GT)

mà OH = OB + BH

    OK = OA + AK 

=> AK = BH 

Xét Tam giác vuông AIK và Tam giác vuông BIH

AK = BH

<OKB = <OHA 

=> Tam giác vuông AIK = Tam giác vuông BIH  ( cạnh góc vuông - góc nhọn kề)

=> AI = BI  (2CTU)

Xét Tam giác OAI = Tam giác OBI có :

OA = OB (GT)

OI chung 

AI = BI (cmt)

=> Tam giác OAI = Tam giác OBI  (c.c.c)

=> <AOI = <BOI  (2GTU)

=> OI là tia phân giác của <xOy    (dpcm)

20 tháng 1 2017

Cảm ơn bạn nhiều