Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: |x+3| \(\ge\)0; |2x+y-4| \(\ge\)0
\(\Rightarrow\) |x + 3| + |2x + y - 4| \(\ge\) 0
Dấu = xảy ra khi x+3=0 và 2x+y-4 = 0 \(\Rightarrow\)x=-3; y=10
1) |x + 3| + |2x + y - 4| = 0
\(\Leftrightarrow\hept{\begin{cases}x+3=0\\2x+y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\-6+y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=10\end{cases}}\)
c)(x-4).(2x+6)=0
=>(x-4)=0 hoặc (2x+6)=0
với x-4 = 0
x =0+4
x =4
với 2x+6=0
2x =0-6
2x =-6
x =-6:2
x =-3
a/ (2x2 + 3x - 1)2 - 4(2x2 + 3x + 3) + 20 = 0
Đặt a = 2x2 + 3x - 1 , ta đc:
a2 - 4.(a + 4) + 20 = 0
=> a2 - 4a - 16 + 20 = 0
=> a2 - 4a + 4 = 0
=> (a - 2)2 = 0 => a = 2
Với a = 2 => 2x2 + 3x - 1 = 2 => 2x2 + 3x - 3 = 0
Có : \(\Delta=3^2-4.2.\left(-3\right)=33\Rightarrow\sqrt{\Delta}=\sqrt{33}\)
\(\Rightarrow x_1=\frac{-3+\sqrt{33}}{4};x_2=\frac{-3-\sqrt{33}}{4}\)
Vậy pt có 2 nghiệm như trên
a) \(2x\left(x-3\right)+6\left(3-x\right)=0\)
\(\Leftrightarrow2\left[x\left(x-3\right)+3\left(3-x\right)\right]=0\)
\(\Leftrightarrow x\left(x-3\right)+3\left(3-x\right)=0\)
\(\Leftrightarrow x-3=0\)
\(\Rightarrow x=3\)
b) \(3x\left(2x-5\right)-15\left(5-2x\right)=0\)
\(\Leftrightarrow3\left[x\left(2x-5\right)-5\left(5-2x\right)\right]=0\)
\(\Leftrightarrow x\left(2x-5\right)-5\left(5-2x\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\2x-5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-5\\x=\frac{5}{2}\end{cases}}\)
Bài 4:
a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\) (ĐK: \(x\ge\dfrac{-1}{2}\))
\(\Rightarrow\) \(\left(\sqrt{3x+4}-\sqrt{2x+1}\right)^2\) = x + 3
\(\Leftrightarrow\) \(3x+4+2x+1-2\sqrt{\left(3x+4\right)\left(2x+1\right)}=x+3\)
\(\Leftrightarrow\) \(4x+2=2\sqrt{6x^2+11x+4}\)
\(\Leftrightarrow\) \(2x+1=\sqrt{6x^2+11x+4}\)
\(\Rightarrow\) \(4x^2+4x+1=6x^2+11x+4\)
\(\Leftrightarrow\) \(2x^2+7x+3=0\)
\(\Delta=7^2-4.2.3=25\); \(\sqrt{\Delta}=5\)
Vì \(\Delta\) > 0; theo hệ thức Vi-ét ta có:
\(x_1=\dfrac{-7+5}{4}=\dfrac{-1}{2}\)(TM); \(x_2=\dfrac{-7-5}{4}=-3\) (KTM)
Vậy ...
Các phần còn lại bạn làm tương tự nha, phần d bạn chuyển \(-\sqrt{2x+4}\) sang vế trái rồi bình phương 2 vế như bình thường là được
Bài 5:
a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)
\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)
\(\Rightarrow\) \(\sqrt{x}+2=5x+2\)
\(\Leftrightarrow\) \(5x-\sqrt{x}=0\)
\(\Leftrightarrow\) \(\sqrt{x}\left(5\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}\sqrt{x}=0\\5\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{25}\end{matrix}\right.\)
Vậy ...
Phần b cũng là hằng đẳng thức thôi nha \(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=x-1\); \(\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}=x+2\) rồi giải như bình thường là xong nha!
VD1:
a, \(\sqrt{2x-1}=\sqrt{2}-1\) (x \(\ge\) \(\dfrac{1}{2}\))
\(\Leftrightarrow\) \(2x-1=\left(\sqrt{2}-1\right)^2\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x-1=2-2\sqrt{2}+1\)
\(\Leftrightarrow\) \(2x=4-2\sqrt{2}\)
\(\Leftrightarrow\) \(x=2-\sqrt{2}\) (TM)
Vậy ...
Phần b tương tự nha
c, \(\sqrt{3}x^2-\sqrt{12}=0\)
\(\Leftrightarrow\) \(\sqrt{3}x^2=\sqrt{12}\)
\(\Leftrightarrow\) \(x^2=2\)
\(\Leftrightarrow\) \(x=\pm\sqrt{2}\)
Vậy ...
d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
\(\Leftrightarrow\) \(\sqrt{2}\left(x-1\right)=\sqrt{50}\)
\(\Leftrightarrow\) \(x-1=5\)
\(\Leftrightarrow\) \(x=6\)
Vậy ...
VD2:
Phần a dễ r nha (Bình phương 2 vế rồi tìm x như bình thường)
b, \(\sqrt{x^2-x}=\sqrt{3-x}\) (\(x\le3\); \(x^2\ge x\))
\(\Leftrightarrow\) \(x^2-x=3-x\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(x^2=3\)
\(\Leftrightarrow\) \(x=\pm\sqrt{3}\) (TM)
Vậy ...
c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\dfrac{\sqrt{3}}{2}\))
\(\Leftrightarrow\) \(2x^2-3=4x-3\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x^2-4x=0\)
\(\Leftrightarrow\) \(2x\left(x-2\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)
Vậy ...
Chúc bn học tốt! (Có gì không biết cứ hỏi mình nha!)
nếu tìm x thì mk làm đc:
\(\frac{x}{3}+\frac{2x-6}{6}=2-\frac{x}{3}\)
\(\Leftrightarrow\frac{2x}{6}+\frac{2x-6}{6}=\frac{6}{x}-\frac{x}{3}\)
\(\Leftrightarrow\frac{2x+2x-6}{6}=\frac{6-x}{3}\)
\(\Leftrightarrow\frac{2x+2x-6}{6}=\frac{2\left(6-x\right)}{2.3}=\frac{12-2x}{6}\)
<=>2x+2x-6=12-2x
<=>4x-6=12-2x
<=>4x-2x=12-6
<=>2x=6<=>x=3
Vậy x=3
\(\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+...+\frac{1}{11\times12}\)
\(=\frac{4-3}{3\times4}+\frac{5-4}{4\times5}+\frac{6-5}{5\times6}+...+\frac{12-11}{11\times12}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{3}-\frac{1}{12}\)
\(=\frac{1}{4}\)
\(x\left(2x-3\right)-4=-6\)
\(2x^2-3x+2=0\)
\(2x^2-2.\frac{3}{2\sqrt{2}}+\frac{9}{8}+\frac{7}{8}=0\)
\(\left(\sqrt{2}x-\frac{3}{2\sqrt{2}}\right)^2+\frac{7}{8}=0\)
Vì \(\left(\sqrt{2}x-\frac{3}{2\sqrt{2}}\right)^2>0\)\(\Rightarrow\left(\sqrt{2}x-\frac{3}{2\sqrt{2}}\right)^2+\frac{7}{8}>0\)
= > PT vô nghiệm