Tìm abcd biết ad + 1990 = abcd
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S_{ABCD}=AB.AD=48\Rightarrow S_{BCDE}=30\)
\(S_{BCDE}=\dfrac{1}{2}CD.\left(ED+BC\right)=\dfrac{1}{2}.6.\left(8-x+8\right)=30\)
\(\Rightarrow x=6\)
\(a.a=3,b=0,c=7\)
\(b.a=2,b=0,c=0,d=8\)
\(c.a=1,b=9,c=6,d=7\)
\(d.a,b\in\left\{\varnothing\right\}\) (tức là không có số nào thỏa mãn đề bài)
49/60= 1/60+1/60+1/60+1/60+.....+1/60.
Vì 1/60 > 1/11; 1/60>1/12;... nên 1/11+1/12+1/13+1/14+...+1/25 > 1/60
Xét tứ giác ABCD có \(\widehat{BAD}+\widehat{BCD}=180^0\)
Do đó: ABCD là tứ giác nội tiếp
hay A,B,C,D cùng thuộc 1 đường tròn
Tâm là trung điểm của BD
Bán kính là \(\dfrac{BD}{2}\)
a.Cho tứ giác ABCD biết AB//CD và AB=CD.CMR AD//BC và AD=BC
Ta có :\(\left\{{}\begin{matrix}\text{AB // CD}\\AB=CD\end{matrix}\right.\)(gt)
=> Tứ giác ABCD là hình bình hành
=> \(\left\{{}\begin{matrix}\text{AD //BC}\\AD=AD\end{matrix}\right.\)(tính chất hình bình hành)
b.Cho tứ giác ABCD biết AB//CD và AD//BC.CMR:AB=CD và AD=BC
Ta có : \(\left\{{}\begin{matrix}\text{AB //CD}\\\text{AD //BC}\end{matrix}\right.\) (gt)
=> Tứ giác ABCD là hình bình hành
Do đó : \(\left\{{}\begin{matrix}AB=CD\\AD=BC\end{matrix}\right.\)(tính chất hình bình hành)
c.Cho tứ giác ABCD biết AB=CD và AD=BC.CMR AD//BC và AD//BC
Ta có : \(\left\{{}\begin{matrix}AB=CD\\AD=BC\end{matrix}\right.\) (gt)
=> Tứ giác ABCD là hình bình hành
=> AD //BC (tính chất hình bình hành)
*Bạn cũng có thể xét các tứ giác là hình vuông, hình chữ nhật cũng có tính chất tương tự.