K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2016

Ta thấy ngay DE = AH do EHDA là hình chữ nhật.

Gọi độ dài hai cạnh góc vuông lần lượt là x và y, khi đó ta có: \(AH=\frac{xy}{2a}\le\frac{x^2+y^2}{4a}=\frac{4a^2}{4a}=a\)

Vậy độ dài lớn nhất của DE là a, khi tam giác ABC vuông cân tại A.

1 tháng 11 2017

Xét hai tam giác vuông ABH và CAH có:

∠ ABH = ∠ CAH (cùng phụ với góc  ∠ BAH)

Do đó △ ABH đồng dạng  △ CAH (g.g).

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

⇒ A H 2  = BH. CH = 4.9 = 36 ⇒ AH = 6(cm)

Mặt khác, HD ⊥ AB và HE ⊥ AC nên ADHE là hình chữ nhật.

Suy ra: DE = AH = 6 (cm)

Câu 1: 

a: Xét ΔAHB vuông tạiH có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)

\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)

 

28 tháng 2 2018

a) Xét tam giác AHD và tam giác ABH có:

Góc A chung

\(\widehat{ADH}=\widehat{AHB}\left(=90^o\right)\)

\(\Rightarrow\Delta AHD\sim\Delta ABH\left(g-g\right)\)

\(\Rightarrow\frac{AH}{AB}=\frac{AD}{AH}\Rightarrow AH^2=AB.AD\)

b) Ta có tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật.

Vậy thì \(\widehat{DHA}=\widehat{DEA}\) 

Lại có \(\widehat{DHA}=\widehat{CBA}\) nên \(\widehat{DEA}=\widehat{CBA}\)

Suy ra \(\Delta ADE\sim\Delta ACB\left(g-g\right)\)

c) Gọi I là giao điểm của AO và DE.

Xét tam giác vuông ABC có AO là trung tuyến ứng với cạnh huyền nên OA = OC  hay \(\widehat{OAC}=\widehat{OCA}\)

Lại có  \(\widehat{AED}=\widehat{ABC}\)  nên \(\widehat{OAC}+\widehat{DEA}=\widehat{OCA}+\widehat{ABC}=90^o\)

Suy ra \(\widehat{AIE}=90^o\) hay \(AO\perp DE\)

d) Ta có do \(AO\perp DE\) nên:

\(S_{ADOE}=\frac{1}{2}DE.OA=\frac{1}{2}AH.\frac{BC}{2}=\frac{1}{2}a.AH\)

Vậy thì \(S_{ADOE}\) lớn nhất khi AH lớn nhất.

Xét tam giác vuông ABC, ta có

 \(BC.AH=AB.AC\le\frac{AB^2+AC^2}{2}=\frac{BC^2}{2}=2a^2\)

\(\Rightarrow AH\le a\)

Vậy AH lớn nhất khi AH = a tức là tam giác ABC vuông cân tại A.

8 tháng 10 2019

Vì ADHE là hình chữ nhật nên OD = OH

Suy ra, tam giác ODH cân tại O ⇒ ∠ ODH =  ∠ OHD

Mà Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét tam giác MBD có:

∠ (MDB) =  ∠ (MBD) (vì cùng phụ với hai góc bằng nhau  ∠ (MDH) =  ∠ (MHD))

Suy ra, tam giác MBD cân tại M, do đó MD = MB (2)

Từ (1) và (2) suy ra, MB = MH

Vậy M là trung điểm của BH

Tương tự, ta cũng có N là trung điểm của CH.