cho ab=1 .cmr a^5+b^5=(a^3+b^3)(a^2+b^2)-(a+b)
ai giải được giúp mình nhé!!! Cảm ơn!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
Bài 1:
a) Ta có: A=3+32+33+34+........+359+360=(3+32)+(33+34)+..........+(359+360)
=12+32x (3+32)+.......+358 x (3+32)=12+32 x 12+..........+358 x 12
=12 x (32 +...............+358)= 4 x 3 x (32 +...............+358)
Vì: m.n=m.n chia hết cho n hoặc m. Mà ở đây ta có 4 chia hết cho4.
=> Tổng này chia hết cho 4.
Bài 2:
Ta có: 12a chia hết cho 12; 36b chia hết cho 12.
=> tổng này chia hết cho 12.
Bài 4:a) Ta có: 5 + 5^2 + 5^3= 5 + (.........5) + (............5) = (............5)
Vậy tổng này có kết quả có chữ số tận cùng là 5. Mà những số có chữ số tận cùng là 5 thì chia hết cho 5.
=> Tổng này chia hết cho 5.
|\(x\)| = 1 ⇒ (|\(x\)|)2 = 1 ⇒ \(x^2\) = 1
Thay \(x^2\) = 1 vào biểu thức: M = (\(x^{2^{ }}\) + a)(\(x^2\) + b)(\(x^2\) + c) ta có:
M = (1 + a)(1 + b)(1 + c)
M = (1 + b + a + ab)(1 + c)
M = 1 + b + a + ab + c + bc + ac + abc
M = 1 + ( a + b + c) + (ab + bc + ac) + abc
M = 1 + 2 + (-5) + 3
M = (1+2+3) - 5
M = 1
nghe nhe',bai nay de thui ma.
ta xet ve trai a^3+b^3+c^3=
[(a+b)(a^2-ab+b^2)]+c^3 dung ko.(1)
ma ta co theo gia thiet a+b+c=0 suy ra c= - (a+b)suy ra
c^3= -(a+b)^3
thay vao`(1) ta co [(a+b)(a^2-ab+b^2)] - (a+b)^3
(lay nhan tu chung ta co)=(a+b)[a^2-ab+b^2-(a+b)^2]
(phan h (a+b)^2) =(a+b)[a^2-ab+b^2-(a^2+2ab+b^2)]
=(a+b)(a^2-ab+b^2-a^2-2ab-b^2)
=(a+b).(-3ab)
= -(a+b).3ab (2)
theo gia thiet ta co a+b+c=0 suy ra c= -(a+b)
thay vao(2) ta dc
=3abc
vay la xong
ket luan ve trai bang ve phai
k cho mk nha
\(A=\frac{9a^5-ab^4-18a^4b+2b^5}{3a^2b^2+ab^4-6a^2b^3-2b^5}\)
\(=\frac{a\left(9a^4-b^4\right)-2b\left(9a^4-b^4\right)}{ab^2\left(3a^2+b^2\right)-2b^3\left(3a^2+b^2\right)}\)
\(=\frac{\left(9a^4-b^4\right)\left(a-2b\right)}{\left(3a^2+b^2\right)\left(ab^2-2b^3\right)}\)
\(=\frac{\left(3a^2-b^2\right)\left(3a^2+b^2\right)\left(a-2b\right)}{\left(3a^2+b^2\right)b^2\left(a-2b\right)}\)
\(=\frac{3a^2-b^2}{b^2}\)
\(=3.\left(\frac{a}{b}\right)^2-1=3.\left(\frac{2}{3}\right)^2-1=\frac{1}{3}\)
(a3+b3)(a2+b2)-(a+b)
=a5+a3b2+ b3a2+b5-(a+b)
=a5+b5+a2b2(a+b)-(a+b)
=a5+b5+(a+b)-(a+b)(vì ab=1 nên a2b2=1)
=a5+b5(điều phải chứng minh)
\(\left(a^3+b^3\right)\left(a^2+b^2\right)-\left(a+b\right)\)
\(=a^5+a^3b^2+b^3a^2+b^5-\left(a+b\right)\)
\(=a^5+b^5+a^2b^2\left(a+b\right)-\left(a+b\right)\)
\(=a^5+b^5+\left(a+b\right)\)
\(=a^5+b^5\)