K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2022

\(A=\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^3}-\dfrac{1}{2^4}+...+\dfrac{1}{2^{99}}-\dfrac{1}{2^{100}}\)

\(\Rightarrow2^{100}.A=2^{99}-2^{98}+2^{97}-2^{96}+...+2-1\)

\(\Rightarrow2^{101}.A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

\(\Rightarrow2^{100}.A+2^{101}.A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2+\left(2^{99}-2^{98}+2^{97}-2^{96}+...+2-1\right)\)

\(\Rightarrow A\left(2^{100}+2^{101}\right)=2^{100}-1\)

\(\Rightarrow A=\dfrac{2^{100}-1}{2^{100}+2^{101}}\)

16 tháng 3 2022

= 1 phần 2 bạn nhé

14 tháng 11 2023

2:

\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{100^2}-1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}+1\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)

\(=-\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{-101}{200}< -\dfrac{100}{200}=-\dfrac{1}{2}\)

 

10 tháng 5 2021

Mình làm được một câu thôi, bạn dựa vào làm nha!undefined

18 tháng 2 2022

sửa đề : \(F=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)

\(\dfrac{1}{1^2}< \dfrac{1}{1.2};\dfrac{1}{2^2}< \dfrac{1}{2.3};...;\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

Cộng vế với vế 

\(\dfrac{1}{1^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1.2}+...+\dfrac{1}{99.100}=1-\dfrac{1}{2}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)< 7/4 

Vậy ta có đpcm 

25 tháng 2 2022

\(S=\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^3}-\dfrac{1}{2^4}+...+\dfrac{1}{2^{99}}-\dfrac{1}{2^{100}}\\ 2S=1-\dfrac{1}{2}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}-\dfrac{1}{2^{99}}\\ 2S+S=1-\dfrac{1}{2^{100}}\\ S=\dfrac{1-\dfrac{1}{2^{100}}}{3}\)

22 tháng 3 2023

\(A=\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^3}-\dfrac{1}{2^4}+...+\dfrac{1}{2^{99}}-\dfrac{1}{2^{100}}\)

\(\Rightarrow2A=\dfrac{1}{2^2}-\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{100}}-\dfrac{1}{2^{101}}\)

\(\Rightarrow3A=2A+A\)

\(=\left(\dfrac{1}{2^2}-\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{100}}-\dfrac{1}{2^{101}}\right)+\left(\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{99}}-\dfrac{1}{2^{100}}\right)\)

\(=\dfrac{1}{2}-\dfrac{1}{2^{101}}\)

\(\Rightarrow A=\left(\dfrac{1}{2}-\dfrac{1}{2^{101}}\right):3\)

\(=\dfrac{1}{6}-\dfrac{1}{3.2^{101}}\)

o cho 1/2 mu 4 +... thi la + hay - ?

minh thay hoi la