Cho tam giác ABC vuông tại A. trên nửa mp ko chứa điểm C bờ là đường thẳng AB vẽ tia Bx sao cho ABx = 35 độ trên nửa mp chứa điểm A bờ là đường thẳng BC vẽ tia Cy sao cho ACY = 55 độ . chứng minh Bx // Cy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha
a.
Tam giác ABC vuông tại A có:
ABC + ACB = 900
Ta có:
xBC + yCB
= xBA + ABC + yCA + ACB
= 350 + 550 + (ABC + ACB)
= 900 + 900
= 1800
=> xBC và yCB kề bù
mà 2 góc này ở vị trí so le trong
=> Bx // Cy
Chúc bạn học tốt
Tam giác ABC vuông tại A
\(\Rightarrow\widehat{ABC}+\widehat{ACB}=180^o-90^o\)
\(\Rightarrow\widehat{ABC}+\widehat{ACB}=90^o\)
\(\Rightarrow\widehat{ABx}+\widehat{ABC}+\widehat{ACB}+\widehat{ACy}=90^o+35^o+55^o\)
\(\Rightarrow\widehat{CBx}+\widehat{BCy}=180^o\)\
Mà 2 góc đó ở vị trí trong cùng phía
Nên Bx // Cy
trên tia AC lấy điểm F sao cho À = AD
Nối D với C ; D với F
\(\Rightarrow\Delta ADF\)vuông cân tại A
\(\Rightarrow\widehat{ADF}=\widehat{AFD}=45^o\)
Mà \(\widehat{AFD}+\widehat{DFC}=180^o\)( 2 góc kề bù )
hay \(\widehat{DFC}=180^o-45^o=135^o\)
Xét \(\Delta ADC\)vuông tại A có :
\(\widehat{ADC}+\widehat{ACD}=90^o\)( 1 )
vì \(\widehat{ADC}+\widehat{CDE}+\widehat{EDB}=180^o\)
hay \(\widehat{ADC}+90^o+\widehat{EDB}=180^o\)
\(\Rightarrow\widehat{ADC}+\widehat{EDB}=90^o\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\widehat{ACD}=\widehat{EDB}\)
vì \(\Delta ABC\)vuông cân \(\Rightarrow AB=AC\)mà AB = AF
\(\Rightarrow BD=FC\)
Xét \(\Delta BDE\)và \(\Delta CFO\)có :
\(\widehat{ACD}=\widehat{EDB}\)( cmt )
BD = FC ( cmt )
\(\widehat{DFC}=\widehat{DBE}\)( = 135 độ )
Suy ra : \(\Delta BDE\)= \(\Delta CFO\)( g.c.g )
\(\Rightarrow\)DC = DE ( 2 cạnh tương ứng )
mà \(\widehat{CDE}\)= \(90^o\)
Suy ra : \(\Delta DEC\)là tam giác vuông cân
a) Xét tam giác vuông ABM và tam giác vuông NCA có:
NC=AB( gt)
CA=BM ( gt)
=> Tam giác ABM = Tam giác NCA
b) Xét tam giác vuông NCA và tam giác vuông BAC có:
AC chung
NC=BA
=> Tam giác NCA =Tam giác BAC
=> ^NAC =^BCA
mà hai góc trên ở vị trí so le trong
=> NA//BC (1)
c) Xét tam giác vuông ABC và tam giác vuông BMA có:
AB chung
AC=BM
=> Tam giác vuông ABC = Tam giác vuông BMA
=> ^MAB=^ABC
mà hai góc trên ở vị trí so le trong
=> MA//CB (2)
từ (1) , (2) => N, A, M thẳng hàng
Ta lại có: NA=AM ( Tam giác ABM =tam giác NCA)
=> A là trung điểm MN