Cho tam giác ABC có góc A =90°, BC=2.AB
Cho E là trung điểm BC.Tia phân giác góc B cắt AC tại D
CMR:
- DB là phân giác ADE
- BD=DC
- Tính số đo góc C và D
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) BD là tia phân giác của góc ABC cũng là tia phân giác của góc ABE (vì E\(\in\)BC)
b) xét 2 tam giác BAD và BED có:
cạnh BD chung
góc ABD=góc EBD(vì BD là tia phân giác của góc ABE)
E là trung điểm của BC=> BE=CE
2AB=BC hay AB=\(\frac{BC}{2}\)=BE=CE
=> AB=BE
=> 2 tam giác BAD=BED(c.g.c)
=> góc BAD=góc BED=90độ
xét 2 tam giác BED và CED có:
cạnh DE chung
BE=CE(vì E là trung điểm của BC)
góc BED=góc CED(=90độ)
=> 2 tam giác BED=CED(c.g.c)
=> BD=DC(2 cạnh tương ứng)
c)2 tam giác BED=CED(theo b)
=> góc DBE=góc DCE(2 góc tương ứng)
mà góc ABD=góc DBE(vì BD là p.giác của góc ABE)
=> góc ABD=góc DBE=góc DCE
=> góc ABD+góc DBE+góc DCE=góc ABE+góc DCE=3 góc DCE
mà tam giác ABC vuông ở A
=> góc B+góc C=90độ
mà 3 góc DCE=góc ABE+góc DCE=90độ
=> góc DCE=\(\frac{90^0}{3}=30^0\)
=> góc ABC=90độ-góc ABC
=90độ -30độ
=60độ
vậy góc B=60độ và góc C=30độ
a) Vì \( E \) là trung điểm của \( BC \) nên \( BE = \frac{BC}{2} \). Vì \( BC = 2AB \) nên \( BE = AB \). Vì \( BD \) là phân giác của \( \widehat{ABC} \) nên \( \frac{AD}{DC} = \frac{AB}{BC} \). Từ đó, ta có \( \frac{AD}{DE} = \frac{AB}{BE} \) chứng tỏ \( DB \) là phân giác của \( \widehat{ADE} \).
b) Dựa vào tính chất của phân giác trong tam giác
a ) Xét \(\Delta AKB\) và \(\Delta AKC\) có :
AK : cạn chung
AB = AC ( gt)
BK = KC ( K là trung điểm của BC )
\(\Rightarrow\Delta AKB=\Delta AKC\left(c.g.c\right)\)
Ta có :
+ Góc AKB = AKC ( \(\Delta AKB=\Delta AKC\) )
Mà \(\widehat{AKB}+\widehat{AKC}=180^o\) ( kề bù )
\(\Rightarrow\widehat{AKB}=\widehat{AKC}=\frac{180^o}{2}=90^o\)
\(\Rightarrow AK\perp BC\)
b ) Vì :
\(\hept{\begin{cases}EC\perp BC\left(gt\right)\\AK\perp BC\left(cmt\right)\end{cases}}\)
\(\Rightarrow EC//AK\) ( tuef vuông góc đến song song )
d ) Vì \(EC\perp BC\left(gt\right)\)
\(\Rightarrow\widehat{BCE}=90^o\)
Vậy \(\widehat{BCE}=90^o\)
Do BC=2.AB mà E trung điểm BC=>BE=AB
XÉT tam giác DBA và tam giác DBE
BDchung
gócABD=gócEBD(BD phân giác)
BE=AD(cmt)
=>TAM GIÁC BDA=TAM GIÁC DBE