giá trị lớn nhất của -17-(x-3)^2=-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: \(\left(x-3\right)^2\ge0\)
=> \(-17-\left(x-3\right)^2\le-17\)với mọi x
Dấu "=" xảy ra khi và chỉ khi (x - 3)2 = 0
<=> x - 3 = 0
<=> x = 3
Vậy GTLN của -17 - (x - 3)2 là -17 khi và chỉ khi x = 3
2) Ta có: \(\left(x-1\right)^2\ge0\)với mọi x
=> \(-9+\left(x-1\right)^2\ge-9\)
Dấu "=" xảy ra khi và chỉ khi (x - 1)2 = 0
<=> x - 1 = 0
<=> x = 1
Vậy GTNN của -9 + (x - 1)2 là -9 khi và chỉ khi x = 1
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
-17 - (x - 3)2 lớn nhất
=> (x - 3)2 nhỏ nhất
Mà (x- 3)2 \(\ge0\)
Do đó x -3 = 0 => x = 3
Vậy -17 - (x - 3)2 = -17
Vậy Biểu thức lớn nhất khi nó = -17 và x = 3
Vì \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow A\le-17\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy Amax = -17 <=> x = 3
a) A có giá trị nhỏ nhất khi \(\sqrt{x+2}=0\)
Vậy giá trị nhỏ nhất của A là \(\dfrac{3}{11}\).
b) Ta có: -3\(\sqrt{x-5}\) \(\le0\)
=> B có giá trị lớn nhất khi -3\(\sqrt{x-5}\) = 0
Vậy giá trị lớn nhất của B là \(\dfrac{5}{17}\).
Ta có: \(\hept{\begin{cases}\left|x+17\right|\ge0\forall x\in R\\\left|y+3\right|\ge0\forall y\in R\end{cases}\Rightarrow\hept{\begin{cases}-\left|x+17\right|\le0\\-\left|y+3\right|\le0\end{cases}}}\)
\(\Rightarrow A=-\left|x+17\right|-\left|y+3\right|+1945\le1945\)
Dấu " = " xảy ra Khi \(\hept{\begin{cases}\left|x+17\right|=0\\\left|y+3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x+17=0\\y+3=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-17\\y=-3\end{cases}}}\)
Vậy x = -17 và y = -3 khi đạt GTLN = 1945
hok tốt!!!