tìm n thuộc N để 3^n+72 là scp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2,\\ n=0\Leftrightarrow A=1\left(loại\right)\\ n=1\Leftrightarrow A=3\left(nhận\right)\\ n>1\Leftrightarrow A=n^{2012}-n^2+n^{2002}-n+n^2+n+1\\ \Leftrightarrow A=n^2\left[\left(n^3\right)^{670}-1\right]+n\left[\left(n^3\right)^{667}-1\right]+\left(n^2+n+1\right)\)
Ta có \(\left(n^3\right)^{670}-1⋮\left(n^3-1\right)=\left(n-1\right)\left(n^2+n+1\right)⋮\left(n^2+n+1\right)\)
Tương tự \(\left(n^3\right)^{667}⋮\left(n^2+n+1\right)\)
\(\Leftrightarrow A⋮\left(n^2+n+1\right);A>1\)
Vậy A là hợp số với \(n>1\)
Vậy \(n=1\)
\(3,\)
Đặt \(A=n^4+n^3+1\)
\(n=1\Leftrightarrow A=3\left(loại\right)\\ n\ge2\Leftrightarrow\left(2n^2+n-1\right)^2\le4A\le\left(2n^2+n\right)^2\\ \Leftrightarrow4A=\left(2n^2+n\right)^2\\ \Leftrightarrow4n^2+4n^3+4=4n^2+4n^3+n^2\\ \Leftrightarrow n^2=4\Leftrightarrow n=2\)
Vậy \(n=2\)
+ Với a = 0, ta có: 30 + 8 = 1 + 8 = 9 = 32, là số chính phương, chọn
+ Với a > 0 thì 3a chia hết cho 3; 8 chia 3 dư 2 => 3a + 8 chia 3 dư 2, không là số chính phương, loại
Vậy a = 0
Xét n chẵn : n = 2k ( k\(\in\)N)
\(\Rightarrow3^n+19=3^{2k}+19=a^2\left(a\inℕ\right)\)
\(\Rightarrow a^2-\left(3k\right)^2=19\)
\(\Rightarrow\left(a-3k\right)\left(a+3k\right)=19\)
Do \(a-3^k< a+3^k\)
\(\Rightarrow\hept{\begin{cases}a-3k=1\\a+3k=19\end{cases}\Rightarrow2\times3^k=18\Rightarrow3^k=19\Rightarrow3^k=3^2\Rightarrow k=2}\)
\(\Rightarrow n=4\)
Xét n lẻ \(n=1\Rightarrow3^n+19=22\) không là số chính phương