K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2016

Áp dụng bất đẳng thức Bunhiacopxki, ta có : \(1=\left(2.x+4.y\right)^2\le\left(2^2+4^2\right)\left(x^2+y^2\right)\)

\(\Rightarrow x^2+y^2\ge\frac{1}{2^2+4^2}=\frac{1}{20}\)

25 tháng 10 2021

Giả thiết tương đương \(\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2=29\).

Áp dụng bđt Cauchy - Schwarz ta có:

\(\left(2x-3y+4z-20\right)^2=\left[2\left(x-1\right)-3\left(y+2\right)+4\left(z-3\right)\right]^2\le\left(2^2+3^2+4^2\right)\left[\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2\right]=29^2\Rightarrow\left|2x-3y+4z-20\right|\le29\)

a) \(A=x^2+2x+2\)

\(=x^2+2x+1+1\)

\(=\left(x+1\right)^2+1>0\forall x\)

b) \(B=4x^2-4x+11\)

\(=4x^2-4x+1+10\)

\(=\left(2x-1\right)^2+10>0\forall x\)

c) \(C=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

d) Ta có: \(D=x^2-2x+y^2+4y+6\)

\(=x^2-2x+1+y^2+4y+4+1\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+1>0\forall x,y\)

e) Ta có: \(D=x^2-2xy+y^2+x^2-8x+20\)

\(=x^2-2xy+y^2+x^2-8x+16+4\)

\(=\left(x-y\right)^2+\left(x-4\right)^2+4>0\forall x,y\)

28 tháng 9 2017

1. \(x^2+y^2+2x-4y+5\)

\(=\left(x^2+2x+1\right)+\left(y^2-4y+4\right)\)

\(=\left(x+1\right)^2+\left(y-2\right)^2\)

2. \(x^2+4y^2-x-4y+\dfrac{5}{4}\)

\(=\left(x^2-x+\dfrac{1}{4}\right)+\left(4y^2-4y+1\right)\)

\(=\left(x-\dfrac{1}{2}\right)^2+\left(2y-1\right)^2\)

3. \(x^2+4x+20\)

\(=x^2+4x+4+16\)

\(=\left(x+2\right)^2+16\ge16\)

Vậy \(x^2+4x+20\) dương.

19 tháng 10 2020

a) \(x^2-8x+20\)

\(=x^2-2.x.4+16+4\)

\(=\left(x-4\right)^2+4\)

Có: \(\left(x-4\right)^2\ge0\Rightarrow\left(x-4\right)^2+4>0\)

Hay:.............

b) \(x^2+11\)

Có: \(x^2\ge0\Rightarrow x^2+11>0\)

Hay:.............

c) \(4x^2-12x+11\)

\(=4\left(x^2-3x+\frac{11}{4}\right)\)

\(=4\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}+\frac{1}{2}\right)\)

\(=4\left(x-\frac{3}{2}\right)^2+2>0\)

d) \(x^2+5y^2+2x+6y+34\)

\(=x^2+2.x.1+1+y^2+4y^2+2.y.3+9+24\)

\(=\left(x^2+2.x.1+1\right)+\left(y^2+2.y.3+9\right)+4y^2+24\)

\(=\left(x+1\right)^2+\left(y+3\right)^2+\left(2y\right)^2+24\)

Ta có: \(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(y+3\right)^2\ge0\\\left(2y\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2+\left(2y\right)^2+24>0\)

f) \(x^2-2x+y^2+4y+6\)

\(=x^2-2.x.1+1+y^2+2.y.2+4+1\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+1>0\)

1: \(M=0\)

mà \(\left\{{}\begin{matrix}\left(x-2021\right)^{2022}>=0\\\left(2021-y\right)^{2020}>=0\end{matrix}\right.\)

nên x-2021=0 và 2021-y=0

=>x=2021 và y=2021

4 tháng 4 2022

cảm ơn bạn nhiều nha

Bài 1 : 

a, \(\left(x^2-2x+3\right)\left(x-4\right)=0\)

TH1 : \(x^2-2x+3=0\)

\(\left(-2\right)^2-4.3=4-12< 0\)vô nghiệm 

TH2 : \(x-4=0\Leftrightarrow x=4\)

b, \(\left(2x^2-3x-1\right)\left(5x+2\right)=0\)

TH1 : \(\left(-3\right)^2-4.\left(-1\right).2=9+8=17>0\)

\(\Rightarrow x_1=\frac{3-\sqrt{17}}{4};x_2=\frac{3+\sqrt{17}}{4}\)

TH2 ; \(5x+2=0\Leftrightarrow x=-\frac{2}{5}\)

c, đưa về hệ đc ko ? 

d, \(\left(5x^3-x^2+2x-3\right)\left(4x^2-x+2\right)=0\)

TH1 : \(x=0,74...\) ( bấm máy cx ra )

TH2 : \(\left(-1\right)^2-4.2.4< 0\)vô nghiệm 

KL : vô nghiệm 

Bài 2 : 

a, \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)-\left(18x-12\right)\)

\(=6x^2+21x-2x-7-6x^2+5x-6x+5-18x+12=10\)

Vậy biểu thức ko phụ thuộc vào biến 

b, \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)-x^4y^4\)

\(=x^4+x^3y+x^2y^2+xy^3-yx^3-y^2x^2-y^3x-y^4-x^4y^4\)

\(=x^4-y^4-x^4y^4\)Vậy biểu thức phụ thuộc vào biến 

22 tháng 1 2019

Ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Leftrightarrow\frac{yz+zx+xy}{xyz}=0\) (Quy đồng)

\(\Rightarrow yz+zx+xy=0\)

Vì:

\(\left(x^2y^2+y^2z^2+z^2x^2\right)^2=0\)

\(2\left(x^4y^{ }^4+y^4z^4+z^4x^4\right)=0\)

Nên.....(tự kết luận nha)

23 tháng 1 2019

giải chi tiết ( vì sao ) đoạn dưới đây = 0 hộ mk vs :

 vì \(\left(x^2y^2+y^2z^2+z^2x^2\right)^2=0\)

\(2\left(x^4y^4+y^4z^4+z^4x^4\right)=0\)