cho 2x+4y=1. chứng minh x^2+y^2>=1/20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả thiết tương đương \(\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2=29\).
Áp dụng bđt Cauchy - Schwarz ta có:
\(\left(2x-3y+4z-20\right)^2=\left[2\left(x-1\right)-3\left(y+2\right)+4\left(z-3\right)\right]^2\le\left(2^2+3^2+4^2\right)\left[\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2\right]=29^2\Rightarrow\left|2x-3y+4z-20\right|\le29\)
a) \(A=x^2+2x+2\)
\(=x^2+2x+1+1\)
\(=\left(x+1\right)^2+1>0\forall x\)
b) \(B=4x^2-4x+11\)
\(=4x^2-4x+1+10\)
\(=\left(2x-1\right)^2+10>0\forall x\)
c) \(C=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
d) Ta có: \(D=x^2-2x+y^2+4y+6\)
\(=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1>0\forall x,y\)
e) Ta có: \(D=x^2-2xy+y^2+x^2-8x+20\)
\(=x^2-2xy+y^2+x^2-8x+16+4\)
\(=\left(x-y\right)^2+\left(x-4\right)^2+4>0\forall x,y\)
1. \(x^2+y^2+2x-4y+5\)
\(=\left(x^2+2x+1\right)+\left(y^2-4y+4\right)\)
\(=\left(x+1\right)^2+\left(y-2\right)^2\)
2. \(x^2+4y^2-x-4y+\dfrac{5}{4}\)
\(=\left(x^2-x+\dfrac{1}{4}\right)+\left(4y^2-4y+1\right)\)
\(=\left(x-\dfrac{1}{2}\right)^2+\left(2y-1\right)^2\)
3. \(x^2+4x+20\)
\(=x^2+4x+4+16\)
\(=\left(x+2\right)^2+16\ge16\)
Vậy \(x^2+4x+20\) dương.
a) \(x^2-8x+20\)
\(=x^2-2.x.4+16+4\)
\(=\left(x-4\right)^2+4\)
Có: \(\left(x-4\right)^2\ge0\Rightarrow\left(x-4\right)^2+4>0\)
Hay:.............
b) \(x^2+11\)
Có: \(x^2\ge0\Rightarrow x^2+11>0\)
Hay:.............
c) \(4x^2-12x+11\)
\(=4\left(x^2-3x+\frac{11}{4}\right)\)
\(=4\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}+\frac{1}{2}\right)\)
\(=4\left(x-\frac{3}{2}\right)^2+2>0\)
d) \(x^2+5y^2+2x+6y+34\)
\(=x^2+2.x.1+1+y^2+4y^2+2.y.3+9+24\)
\(=\left(x^2+2.x.1+1\right)+\left(y^2+2.y.3+9\right)+4y^2+24\)
\(=\left(x+1\right)^2+\left(y+3\right)^2+\left(2y\right)^2+24\)
Ta có: \(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(y+3\right)^2\ge0\\\left(2y\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2+\left(2y\right)^2+24>0\)
f) \(x^2-2x+y^2+4y+6\)
\(=x^2-2.x.1+1+y^2+2.y.2+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1>0\)
1: \(M=0\)
mà \(\left\{{}\begin{matrix}\left(x-2021\right)^{2022}>=0\\\left(2021-y\right)^{2020}>=0\end{matrix}\right.\)
nên x-2021=0 và 2021-y=0
=>x=2021 và y=2021
Bài 1 :
a, \(\left(x^2-2x+3\right)\left(x-4\right)=0\)
TH1 : \(x^2-2x+3=0\)
\(\left(-2\right)^2-4.3=4-12< 0\)vô nghiệm
TH2 : \(x-4=0\Leftrightarrow x=4\)
b, \(\left(2x^2-3x-1\right)\left(5x+2\right)=0\)
TH1 : \(\left(-3\right)^2-4.\left(-1\right).2=9+8=17>0\)
\(\Rightarrow x_1=\frac{3-\sqrt{17}}{4};x_2=\frac{3+\sqrt{17}}{4}\)
TH2 ; \(5x+2=0\Leftrightarrow x=-\frac{2}{5}\)
c, đưa về hệ đc ko ?
d, \(\left(5x^3-x^2+2x-3\right)\left(4x^2-x+2\right)=0\)
TH1 : \(x=0,74...\) ( bấm máy cx ra )
TH2 : \(\left(-1\right)^2-4.2.4< 0\)vô nghiệm
KL : vô nghiệm
Bài 2 :
a, \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)-\left(18x-12\right)\)
\(=6x^2+21x-2x-7-6x^2+5x-6x+5-18x+12=10\)
Vậy biểu thức ko phụ thuộc vào biến
b, \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)-x^4y^4\)
\(=x^4+x^3y+x^2y^2+xy^3-yx^3-y^2x^2-y^3x-y^4-x^4y^4\)
\(=x^4-y^4-x^4y^4\)Vậy biểu thức phụ thuộc vào biến
Ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Leftrightarrow\frac{yz+zx+xy}{xyz}=0\) (Quy đồng)
\(\Rightarrow yz+zx+xy=0\)
Vì:
\(\left(x^2y^2+y^2z^2+z^2x^2\right)^2=0\)
\(2\left(x^4y^{ }^4+y^4z^4+z^4x^4\right)=0\)
Nên.....(tự kết luận nha)
giải chi tiết ( vì sao ) đoạn dưới đây = 0 hộ mk vs :
vì \(\left(x^2y^2+y^2z^2+z^2x^2\right)^2=0\)
\(2\left(x^4y^4+y^4z^4+z^4x^4\right)=0\)
Áp dụng bất đẳng thức Bunhiacopxki, ta có : \(1=\left(2.x+4.y\right)^2\le\left(2^2+4^2\right)\left(x^2+y^2\right)\)
\(\Rightarrow x^2+y^2\ge\frac{1}{2^2+4^2}=\frac{1}{20}\)