giải phương trình
\(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge0\)
Bình phương 2 vế ta được:
\(8+\sqrt{x}+5-\sqrt{x}+2\sqrt{\left(8+\sqrt{x}\right)\left(5-\sqrt{x}\right)}=25\)
\(\Rightarrow2\sqrt{40-3\sqrt{x}-x}=12\)
\(\Rightarrow4\left(40-3\sqrt{x}-x\right)=144\)
\(\Rightarrow160-12\sqrt{x}-4x-144=0\)
\(\Rightarrow-4x-12\sqrt{x}+16=0\)
\(\Rightarrow\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=-4\left(l\right)\\\sqrt{x}=1\end{cases}\Rightarrow x=1}\)
Vậy x = 1
2
\(M=2y-3x\sqrt{y}+x^2=y-2x\sqrt{y}+x^2+y-x\sqrt{y}\\ =\left(\sqrt{y}-x\right)^2+\sqrt{y}\left(\sqrt{y}-x\right)\\ =\left(\sqrt{y}-x\right)\left(\sqrt{y}-x+\sqrt{y}\right)\\ =\left(\sqrt{y}-x\right)\left(2\sqrt{y}-x\right)\)
b
\(y=\dfrac{18}{4+\sqrt{7}}=\dfrac{18\left(4-\sqrt{7}\right)}{16-7}=\dfrac{72-18\sqrt{7}}{9}=\dfrac{72}{9}-\dfrac{18\sqrt{7}}{9}=8-2\sqrt{7}\\ =7-2\sqrt{7}.1+1=\left(\sqrt{7}-1\right)^2\)
Thế x = 2 và y = \(\left(\sqrt{7}-1\right)^2\) vào M được:
\(M=2\left(\sqrt{7}-1\right)^2-3.2.\sqrt{\left(\sqrt{7}-1\right)^2}+2^2\\ =2\left(8-2\sqrt{7}\right)-6.\left(\sqrt{7}-1\right)+4\\ =16-4\sqrt{7}-6\sqrt{7}+6+4\\ =26-10\sqrt{7}\)
1:
a: =>2x-2căn x+3căn x-3-5=2x-4
=>căn x-8=-4
=>căn x=4
=>x=16
b: \(\Leftrightarrow\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)-3\sqrt{x}\left(\sqrt{x}-2\right)=0\)
=>(căn x-2)(x-căn x+4)=0
=>căn x-2=0
=>x=4
\(ĐK:x\ge0\\ PT\Leftrightarrow\left(\sqrt{8+\sqrt{x}}-3\right)+\left(\sqrt{5-\sqrt{x}}-2\right)=0\\ \Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+3}+\dfrac{-\sqrt{x}+1}{\sqrt{5-\sqrt{x}}+2}=0\\ \Leftrightarrow\left(\sqrt{x}-1\right)\left(\dfrac{1}{\sqrt{8+\sqrt{x}}+3}-\dfrac{1}{\sqrt{5-\sqrt{x}}+2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\\dfrac{1}{\sqrt{8+\sqrt{x}}+3}-\dfrac{1}{\sqrt{5-\sqrt{x}}+2}=0\left(vô.n_0,\forall x\ge0\right)\end{matrix}\right.\)
Vậy PT có nghiệm duy nhất \(x=1\)
Điều kiện xác định tự làm nha:
\(\left(1\right)\Leftrightarrow\left(\sqrt{x+1}-\sqrt{y-5}\right)^2=\left(\sqrt{x-5}+\sqrt{y+1}\right)^2\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(y-5\right)}+\sqrt{\left(x-5\right)\left(y+1\right)}=0\)
\(\Rightarrow\hept{\begin{cases}\left(x+1\right)\left(y-5\right)=0\\\left(x-5\right)\left(y+1\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-1\\y=5\end{cases}}\)hoặc \(\hept{\begin{cases}x=5\\y=-1\end{cases}}\)
Thế vô phương trình còn lại coi thử thõa mãn không rồi kết luận
1.
đặt \(a=\sqrt{2+\sqrt{x}}\),\(b=\sqrt{2-\sqrt{x}}\)\(\left(a,b>0\right)\)
có \(a^2+b^2=4\)
pt thành \(\frac{a^2}{\sqrt{2}+a}+\frac{b^2}{\sqrt{2}-b}=\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}\left(a^2+b^2\right)-ab\left(a-b\right)=\sqrt{2}\left(\sqrt{2}+a\right)\left(\sqrt{2}-b\right)\)
\(\Leftrightarrow2\sqrt{2}+\sqrt{2}ab-ab\left(a-b\right)-2\left(a-b\right)=0\)
\(\Leftrightarrow\left(ab+2\right)\left(\sqrt{2}-a+b\right)=0\)
vì a,b>o nên \(a-b=\sqrt{2}\)
\(\Rightarrow\sqrt{2+\sqrt{x}}-\sqrt{2-\sqrt{x}}=\sqrt{2}\)
Bình phương 2 vế:
\(4-2\sqrt{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}=2\)
\(\Leftrightarrow\sqrt{4-x}=1\)
\(\Rightarrow x=3\)
\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(\sqrt{x^2+7x+10}+1\right)=3\)
\(\Leftrightarrow\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(\sqrt{\left(x+5\right)\left(x+2\right)}+1\right)=3\)
Đặt \(\hept{\begin{cases}\sqrt{x+5}=a\left(a\ge0\right)\\\sqrt{x+2}=b\left(b\ge0\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a^2-b^2=3\\\left(a-b\right)\left(ab+1\right)=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a^2-b^2=3\\\left(a-b\right)\left(ab+1-a-b\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a^2-b^2=3\\\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\end{cases}}\)
Với a = b thì
\(\sqrt{x+5}=\sqrt{x+2}\Leftrightarrow0x=3\left(l\right)\)
Với a = 1 thì
\(\sqrt{x+5}=1\Leftrightarrow x=-4\left(l\right)\)
Với b = 1 thì
\(\sqrt{x+2}=1\Leftrightarrow x=-1\)