cho tam giác ABC có 3 góc nhọn, các đường cao AD, BE cắt nhau tại H. Gọi F là giao điểm của CH và AB.
C/M: HD/AD+HE/BE+HF/CF=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
< Bạn tự vẽ hình nha>
a)Xét ΔABE và ΔACF, ta có:
góc A: chung
góc F=góc E= 90o
Vậy ΔABE ∼ ΔACF (g.g)
b)Xét ΔHEC và ΔHFB là:
góc H: chung
H1=H2(đối đỉnh)
Vậy ΔHEC∼ ΔHFB (g.g)
⇒\(\dfrac{HE}{HF}\)=\(\dfrac{HC}{HB}\)⇔HE.HB=HF.HC
<Mình chỉ biết đến đó thôi>
a,Xét tg DHB và tg DCA có: ^HDB=^CDA=90 độ, ^DBH=^DAC ( cùng phụ với hai góc bằng nhau BHD=^AHE)
Do đó: tg HDB đồng dạng tg DCA (g.g)
Suy ra: HD/DC=BD/DA-> bd*dc=dh*da
b, HD/HA=SBHC/SABC
HE/BE=SAHC/SABC
HF/CF=SHAB/SABC
HD/HA+HE/BE+HF/CF=SBHC/SABC+SAHC/SABC+SAHB/SABC=1
Ad ĐỪNG XÓA
Học tiếng anh free vừa học vừa chơi đây
các bạn vào đây đăng kí nhá : https://iostudy.net/ref/165698