Tìm x
- a. 1/16x^2-x+4=0
- X^3-3căn bậc 3x^2+9x-3căn bậc3=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này khá dễ đừng có nghĩ cao siêu
bình phương 2 vế
\(9x^4+x^2+9-6x^3-6x+18x^2=9x^4+9x^2+9\\ \Leftrightarrow6x^3-10x^2+6x=0\\ \Leftrightarrow2x\left(3x^2-5x+3\right)=0\\ \Rightarrow\left\{{}\begin{matrix}2x=0\Rightarrow x=0\\3x^2-5x+3=0\left(l\right)\end{matrix}\right.\)
phương trình sau loại do đenta < 0
vậy x=0 là nghiệm
Ta có: \(X=\sqrt{6-3\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\)
<=> \(X^2=6-3\sqrt{2+\sqrt{3}}+2+\sqrt{2+\sqrt{3}}-2\sqrt{3}.\sqrt{4-\left(2+\sqrt{3}\right)}\)
<= \(X^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3}.\sqrt{2-\sqrt{3}}\)
<=> \(X^2=8-\sqrt{2}\left(\sqrt{3}+1\right)-\sqrt{6}\left(\sqrt{3}-1\right)\)
<=> \(X^2=8-4\sqrt{2}\)
<=> \(X^2-8=-4\sqrt{2}\)
=> \(X^4-16X+64=32\)
<=> \(X^4-16X^2+32=0\)
Vậy X là nghiệm phương trình \(X^4-16X^2+32=0\)
DK \(x^3+1\ge0\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)\ge0\Leftrightarrow x\ge-1\)
ta thay x=-1 ko phai la nghiem => x>-1
pt <=> \(\left(x^2-5x-3\right)+3\left(\sqrt{x^3+1}-2\left(x+1\right)\right)=0\)
<=> \(\left(x^2-5x-3\right)+3\left(\frac{x^3+1-4x^2-8x-4}{\sqrt{x^3+1}+2\left(x+1\right)}\right)=0\)
<=> \(x^2-5x-3+3\left[\frac{\left(x+1\right)\left(x^2-5x+3\right)}{\sqrt{x^3+1}+2\left(x+1\right)}\right]=0\)
<=> \(\left(x^2-5x-3\right)\left(1+\frac{3\left(x+1\right)}{\sqrt{x^3+1}+2\left(x+1\right)}\right)=0\)
<=> x^2 -5x-3=0 ( do cai trong ngoac thu 2 vo nghiem vi X>-1)
<=> \(x=\frac{5\pm\sqrt{37}}{2}\) tmdk
Vay \(S=\left\{\frac{5-\sqrt{37}}{2};\frac{5+\sqrt{37}}{2}\right\}\)