Cho tam giác ABC biết góc C=90 độ
BC=3cm; CA=4cm
BK(K thuộc CA)
K CE vông AB tại E
a AB=?
b BC=BE
c BC EK M so sánh KM KE
d CE // MA
0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
a. Xét ΔHBA và ΔABC có:
\(\widehat{H}=\widehat{A}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔHBA \(\sim\) ΔABC (g.g)
b. Vì ΔABC vuông tại A
Theo đ/lí Py - ta - go ta có:
BC2 = AB2 + AC2
BC2 = 32 + 42
\(\Rightarrow\) BC2 = 25 cm
\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm
Ta lại có: ΔHBA \(\sim\) ΔABC
\(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)
\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\)
\(\Rightarrow\) AH = 2,4 cm
Xét ΔABC có BM là đường phân giác
nên AM/AB=CM/CB
=>AM/3=CM/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AM}{3}=\dfrac{CM}{5}=\dfrac{AM+CM}{3+5}=\dfrac{4}{8}=\dfrac{1}{2}\)
Do đó: AM=1,5(cm)
Xét ΔABM vuông tại A và ΔDEF vuông tại D có
AB/DE=AM/DF
Do đó: ΔABM\(\sim\)ΔDEF
Xét ΔABC có:
\(\widehat{BAC}=90^o\)
\(\Rightarrow\Delta ABC\) vuông tại A
\(\Rightarrow BC^2=AB^2+AC^2\)
\(\Rightarrow AC^2=BC^2-AB^2\)
\(=5^2-3^2\)
\(=25-9\)
\(=16\)
\(\Rightarrow AC=4cm\)
Mà \(AB=3cm\)
\(\Rightarrow\widehat{ABC}>\widehat{ACB}\left(đl\right)\)
Đây là định lý pytago? Nếu đúng là vậy thì xem lại, vì lớp 7 mới không học định lý này.
\(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)
AB<AC<BC
=>góc C<góc B<góc A
a, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=5cm\)
Theo định lí Pytago tam giác MNP vuông tại N
\(NP=\sqrt{MP^2-MN^2}=6cm\)
b, Xét tam giác ABC và tam giác NPM có
^BAC = ^PNM = 900
\(\dfrac{AB}{NP}=\dfrac{AC}{NM}=\dfrac{3}{6}=\dfrac{4}{8}=\dfrac{1}{2}\)
Vậy tam giác ABC ~ tam giác NPM ( c.g.c )
a: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)
\(NP=\sqrt{10^2-8^2}=6\left(cm\right)\)
b: Xét ΔABC vuông tại A và ΔNPM vuông tại N có
AB/NP=AC/NM
Do đó: ΔABC\(\sim\)ΔNPM
a, tam giác ABC vuông tại B có góc A = 30 độ => AC = 2 BC = 2. 3 = 6 cm
theo định lí Pytago ta có AB = \(\sqrt{ÃC^2-BC^2}=\sqrt{6^2-3^2}\) = \(3\sqrt{3}\) cm
góc C = 90 - 30 = 60 độ
b, tam giác ABH vuông tại H có góc A = 30 độ => AB = 2 BH => BH = \(\frac{3\sqrt{3}}{2}\)cm
theo định lí Pytago ta có AH = \(\sqrt{AB^2-BH^2}=\sqrt{\left(3\sqrt{3}\right)^2-\left(\frac{3\sqrt{3}}{2}\right)^2}=4,5cm\)
diện tích tam giác ABH =\(\frac{1}{2}.BH.AH=\frac{1}{2}.\frac{3\sqrt{3}}{2}.4,5=\frac{27\sqrt{3}}{8}\)cm vuông
a) Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\left(=90^0-\widehat{HAB}\right)\)
Do đó: ΔHBA\(\sim\)ΔHAC(g-g)