K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2022

freqché tonery élooin shçç 

arzàyu radio rubsz tqsd

çàèé sonuhy,lafneq toin

çàea & reszao and shoppea

reach 123 tusqi yuoyuè 

                               (reachèst)

26 tháng 6 2021

1.Xét ΔHBA và ΔABC có:

góc AHB=góc BAC=90o

Góc B chung 

=> ΔABC đồng dạng ΔHBA (g.g)

=>\(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)\(\Rightarrow BA.BA=BH.BC\)

2. Xét ΔHBI và ΔABE có:

góc ABE=IBH (Vì BE là tia phân giác của góc B, I nằm trên BE)

góc BAE=góc IHB=90o

=>ΔHBI đồng dạng ΔABE (g.g)

 

 

3 tháng 8 2021

cảm ơn bn

16 tháng 8 2021

a) Xét tam giác BHA và BHE có:

BD chung

ˆABD^=ˆEBD^(vì BD là phân giác ˆBB^)

ˆBHA^=ˆBHE^(vì AH vuông góc với Bd tại H)

Tam giác BHA=tam giac BHE(c.g.v-g.n.k)

b) Xét Tam giác BDA và tam giác BDE có

BD chung

BA=BE( vì tam giac BHA = tam giac BHE( chứng minh phần a))

ABD=EBD( vì BD là phân giác củaˆBB^)

⇒⇒Tam giác BDA = Tam giác BDE(c.g.c)

⇒⇒ˆBEA^=ˆA^= 90o(2 canh tương ứng và ˆA^= 90o)

ED vuông góc với B tại E

c, AD = DE

DE < CD do tam giác CDE vuông tại E

=> AD < DC

d, DA= DE do tam giác ABD = tam giác EBD (Câu b)

=> tam giác DAE cân tại D (đn)

=> ^DAE = ^DEA (tc)            (1)

có : AK _|_ BC (gt) ; DE _|_ BC (câu b)

=> DE // AK 

=> ^DEA = ^EAK (slt) và (1)

=> ^DAE = ^EAK mà AE nằm giữa AD và AK 

=> AE là phân giác của ^CAK (đpcm)

16 tháng 8 2021

a) Vì EH ⊥ BC ( gt )

=> ΔBHE vuông tại H

Xét tam giác vuông BAE và tam giác vuông BHE có :

BE chung

∠B1 = ∠B2 ( BE là tia phân giác của ∠BAC )

=> ΔBAE = ΔBHE ( cạnh huyền - góc nhọn )

b) Gọi I là giao điểm của AH và BE

Xét ΔABI và ΔHBI có :

BA = BH (ΔBAE = ΔBHE (cmt)

∠B1 = ∠B2 ( BE là tia phân giác của ∠BAC )

BI chung

=> ΔABI = ΔHBI ( c.g.c )

=> ∠AIB = ∠AIH ( 2 góc tương ứng )

Mà ∠AIB + ∠AIH = 1800 ( 2 góc kề bù )

=> ∠AIB = ∠AIH = 900

=> BI ⊥ AH (1)

Ta có: IA = IH ( ΔABI = ΔHBI ( cmt )

Mà I nằm giữa hai điểm A và H (2)

=> I là trung điểm của AH ( 3)

Từ (1) (2) (3) => BI là trung trực của AH

Hay BE là trung trực của AH

c) Xét ΔKAE và ΔCHE có:

∠KAE = ∠CHE ( = 900 )

AE = HE ( ΔBAE = ΔBHE (cmt)

∠AEK = ∠HEC ( 2 góc đối đỉnh )

=> ΔKAE = ΔCHE ( g.c.g )

=> EK = EC ( 2 cạnh tương ứng )

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)

Do đó: ΔABE=ΔHBE

b: Ta có:ΔABE=ΔHBE

nên BA=BH và EA=EH

=>BE là đường trung trực của AH

c: Xét ΔAEK vuông tại A và ΔHEC vuông tại H có

EA=EH

\(\widehat{AEK}=\widehat{HEC}\)

Do đó: ΔAEK=ΔHEC

Suy ra: EK=EC

hay ΔEKC cân tại E

d: Xét ΔBKC có BA/AK=BH/HC

nên AH//KC

NV
10 tháng 3 2023

Xét hai tam giác vuông BHA và BAC có:

\(\left\{{}\begin{matrix}\widehat{B}\text{ chung}\\\widehat{BHA}=\widehat{BAC}=90^0\end{matrix}\right.\)

\(\Rightarrow\Delta BHA\sim\Delta BAC\left(g.g\right)\)

Xét ΔBHA và ΔBAC có:

\(\widehat{ABC}chung\)

\(\widehat{BHA}=\widehat{BAC}\left(=90^o\right)\)

⇒ ΔBHA ∾ ΔBAC ( g.g )

loading...

 

24 tháng 5 2019

A C H F E D B

A.Xét ΔABE và ΔDBE có:

Cạnh BE chung

BD = BA

⇒ ΔABE = ΔDBE (cạnh huyền – góc nhọn) 

b. Do BD = BA nên B nằm trên đường trung trực của AD

Do ΔABE = ΔDBE ⇒ AE = ED (hai cạnh tương ứng)

E nằm trên đường trung trực của AD 

Vậy BE là đường trung trực của AD

c. Do ΔABE = ΔDBE ⇒ ∠(ABE) = ∠(EBC) (hai góc tương ứng)

Suy ra BE là tia phân giác của góc ABC 

24 tháng 5 2019

HÌNH VẼ HƠI LỆCH 1 TÍ NHA

1) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

Suy ra: \(\dfrac{HB}{AB}=\dfrac{AB}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=BH\cdot BC\)

 

16 tháng 3 2022

có điểm kìa

K trả lời thì thôi đừng nói như vậy người khác k hiểu

Bài 1 Cho tam giác DEF cân tại D với đường trung tuyến DIa/ Chứng minh :∆ DEI = ∆DFIb/ Các góc DIE và góc DIF là những góc gì ?c/ Biết DI = 12cm , EF = 10cm . Hãy tính độ dài cạnh DE.Bài 2Cho tam giác ABC vuông ở A, có ∠C = 300 , AHBC (H∈BC). Trên đoạn HC lấy điểm D sao cho HD = HB. Từ C kẻ CE ⊥ AD. Chứng minh :a)Tam giác ABD là tam giác đều .b)AH = CE.c)EH // AC .Bài 3  Cho ΔABC biết AB = 3cm, AC = 4cm, BC = 5cm. Trên...
Đọc tiếp

Bài 1 Cho tam giác DEF cân tại D với đường trung tuyến DI

a/ Chứng minh :∆ DEI = ∆DFI

b/ Các góc DIE và góc DIF là những góc gì ?

c/ Biết DI = 12cm , EF = 10cm . Hãy tính độ dài cạnh DE.

Bài 2

Cho tam giác ABC vuông ở A, có ∠C = 300 , AHBC (H∈BC). Trên đoạn HC lấy điểm D sao cho HD = HB. Từ C kẻ CE ⊥ AD. Chứng minh :

a)Tam giác ABD là tam giác đều .

b)AH = CE.

c)EH // AC .

Bài 3  Cho ΔABC biết AB = 3cm, AC = 4cm, BC = 5cm. Trên tia đối của tia AC lấy điểm D sao cho AD =AC

a. Chứng minh tam giác ABC vuông

b) Chứng minh ΔBCD cân

c)Gọi E là trung điểm của BD, CE cắt AB tại O. Tính OA, OC

Bài 4:

Cho ABC cân tại A,  vẽ AH vuông góc với BC tại H. Biết AB=5cm, BC= 6cm.

a) Chứng minh BH =HC.

b) Tính độ dài BH, AH.

c) Gọi G là trọng tâm của tam giác ABC. Chứng minh rằng A, G, H thẳng hàng.

d) Chứng minh ∠ABG = ∠ACG

Bài 5. (3,5 điểm)

Cho DABC có góc C = 900 ; BC = 3cm; CA = 4cm. Tia phân giác BK của góc ABC (K∈ CA); từ K kẻ KE ⊥ AB tại E.

a) Tính AB.

b) Chứng minh BC = BE.

c) Tia BC cắt tia EK tại M. So sánh KM và KE.

d) Chứng minh CE // MA

Bài 6:

Cho  ΔABC  vuông  tại  A, đường  phân  giác  BE. Kẻ  EH  vuông  góc  với  BC (H ∈ BC). Gọi K là giao điểm của AB và HE. Chứng minh rằng:

a) ΔABE = ΔHBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC.

d) AE < EC.

Bài 7

Cho ABC cân tại A có AB = 5cm, BC = 6cm. Từ A kẻ đường vuông góc AH đến BC.

a. Chứng minh: BH = HC.

b. Tính độ dài đoạn AH.

c. Gọi G là trọng tâm Trên tia AG lấy điểm D sao cho AG = GD. Tia CG cắt AB tại F. Chứng minh: BD = 2/3CF

d) Chứng minh: DB + DG > AB.

Bài 8

 Cho tam giác ABC vuông tại A. Trên tia đối của tia AB lấy điểm K sao cho BK = BC. Vẽ KH vuông góc với BC tại H và cắt AC tại E.

a) Vẽ hình và ghi GT – KL ?

b) KH = AC

c) BE là tia phân giác của góc ABC ?

d) AE < EC ?

Bài 9

Cho  ΔABC cân tại A, hai trung tuyến BM, CN cắt nhau tại K. Chứng minh :

a) ΔBNC =   ΔCMB

b) ΔBKC cân tại K

c) MN // BC

0